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1 Some motivation

In the first lecture, we laid out the basic regression framework that we will study in this course. At
hand we have a collection of inputs X1, . . . ,Xn ∈ X ⊆ Rd, a corresponding collection of outputs
Y1, . . . , Yn ∈ Y (for now we consider Y ⊆ R), and we are tasked vaguely with using this data to
construct a function g : X → Y that can predict new outputs given new inputs, in some ‘good’
way. We introduced two possible probabilistic frameworks for describing how the data arise,

• Random design: (Y1,X1), . . . , (Yn,Xn)
iid∼ P

• Fixed design: (X1, . . . ,Xn) ∼ P ∗, and given (X1, . . . ,Xn), the outputs Y1, . . . , Yn are inde-
pendently drawn from PY |X, induced by the joint distribution P . In particular, we assume
that for i ∈ {1, . . . , n},

Yi ⊥⊥ ((Y1,X1), . . . , (Yi−1,Xi−1), (Yi+1,Xi+1), . . . , (Yn,Xn))
∣∣Xi.

Using the notions of loss and risk, we decided that in a certain sense, the conditional mean
gP (X) = EP [Y |X], called the regression function, was the optimal choice for g (how precisely
was this decided?). Since we cannot possibly know this function exactly, a good idea is to use the
data at hand to construct a regression estimator ĝn to approximate gP , and subsequently empirical
risk minimization (ERM) was proposed as a reasonable way to choose ĝn. Unfortunately, even in
the simple setting where X is a one-dimensional continuous variable, this approach fails unless we
make further assumptions on the form of EP [Y |X].

Indeed, we will spend much of this course assuming a linear model for EP [Y |X]. Specifically,
we will postulate the existence of β(P ) ∈ Rd such that

EP [Y |X] = XTβ(P ) =
d∑

j=1

βj(P )Xj .

Strictly speaking, with this modeling restriction and the mechanism of ERM, we could go through
the brute force calculus to derive the least squares estimator β̂ and end the story with the regression
estimator ĝn(X) = XT β̂. However, doing only this would be foolish, as it would ignore the deep
and beautiful structure of both the statistical model, and the optimal estimators that fall out.
The mathematical language best suited for understanding linear models is, quite naturally, linear
algebra, and this is what we will explore in the coming weeks.



2 Fundamental vector space concepts

Our study of linear algebra in BST 235 will cover the following broad topics:

• Vector spaces, subspaces, basis and dimension

• Inner products and norms, orthogonal projection

• Linear maps and matrices, rank, inverses

• Spectral / singular value decomposition of matrices, generalized inverses

Today, we will take as our goal to understand the ideas in the first bullet point.

Definition 1. Suppose we have a non-empty set V , a field F and operations ⊕ : V × V → V ,
� : F× V → V . The triple (V,⊕,�), or just V if clear from context, is called a vector space if the
following axioms are satisfied.

(1) Vector addition:

(a) associativity: (v1 ⊕ v2)⊕ v3 = v1 ⊕ (v2 ⊕ v3), for all v1, v2, v3 ∈ V ,

(b) identity element: ∃ 0V ∈ V such that v ⊕ 0V = v, for all v ∈ V ,

(c) commutativity: v1 ⊕ v2 = v2 ⊕ v1, for all v1, v2 ∈ V ,

(d) inverse element: ∀ v ∈ V,∃ −v ∈ V such that −v ⊕ v = 0V .

(2) Scalar multiplication:

(a) associativity: (a1 · a2)� v = a1 � (a2 � v), for all a1, a2 ∈ F, v ∈ V ,

(b) identity element: 1F � v = v, for all v ∈ V ,

(c) distributivity wrt vector addition: a� (v1 ⊕ v2) = (a� v1)⊕ (a� v2), ∀a ∈ F, v1, v2 ∈ V .

(d) distributivity wrt to field addition: (a1 + a2)� v = (a1� v)⊕ (a2� v), ∀a1, a2 ∈ F, v ∈ V .

Remark 1. In this course, we will exclusively consider F = R, and we refer to V as a real vector
space. In this case we can unambiguously write 0 and 1 for 0F and 1F, respectively. Note that
these axioms were historically landed upon due to their efficiency — they are minimal, but imply
all the properties we would expect. As an exercise, you might show the following consequences of
the above definition:

• If u⊕ v = u⊕ w then v = w (cancellation).

• The zero vector 0V is unique, as are additive inverses.

• For any v ∈ V , 0� v = 0V .

• For any a ∈ F, a� 0V = 0V .

• (−1)� v = −v, for all v ∈ V .
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Finally, note that we will often use + instead of ⊕, av for a� v, and infer whether we mean vector
or field operations based on the context.

Definition 2. Suppose (V,⊕,�) is a vector space over the field F. We say that U ⊆ V is a linear
subspace, or subspace, of V if (U,⊕,�) is a vector space over F, where ⊕ and � are restricted to U .

Lemma 1. Given vector space (V,⊕,�) over F, the set U ⊆ V is a subspace of V if and only if

(i) U 6= ∅ (equivalently, check 0V ≡ 0U ∈ U),

(ii) u, v ∈ U =⇒ u⊕ v ∈ U (closure under addition), and

(iii) a ∈ F, v ∈ U =⇒ av ∈ U (closure under scalar multiplication).

Now that we have defined vector spaces as sets of elements for which addition and scalar multipli-
cation are well-behaved, we can now introduce two dual concepts that characterize collections of
vectors. One concept is span, which describes the overall expressiveness of a set of vectors. The
other concept is linear independence, which pertains to the non-redundancy in such a collection.
Formally, these are defined as follows:

Definition 3. Suppose (V,⊕,�) is a vector space over F. The linear span of the collection of
vectors {v1, . . . , vk} ⊆ V is the set of all linear combinations of these vectors,

(a1 � v1)⊕ · · · ⊕ (ak � vk) =:
k∑

`=1

a`v`.

We write

L (v1, . . . , vk) =

{
k∑

`=1

a`v`

∣∣∣∣ a1, . . . , ak ∈ F

}
.

We say that the vectors v1, . . . , vk span a subspace U ⊆ V if L (v1, . . . , vk) = U .

The vectors v1, . . . , vk are called linearly independent if

0V =
k∑

`=1

a`v` =⇒ 0 = a1 = · · · = ak,

i.e., there is no non-trivial way to combine the vectors to yield 0V . If there exist, a1, . . . , ak ∈ F
not all zero such that 0V =

∑k
`=1 a`v`, then v1, . . . , vk are called linearly dependent.

Definition 4. Let (V,⊕,�) be a vector space over F. A collection {v1, . . . , vk} ⊆ V is called a
basis for V if v1, . . . , vk span V and are linearly independent.

Remark 2. A basis for a vector space essentially comprises a coordinate system — a minimal (cf.
linearly independent) set of points that are sufficiently expressive (cf. spanning) to describe the
whole space through linear combinations.

Two issues arise immediately: existence and uniqueness. With a slight expanding of the above
definitions of span and linear independence to account for infinite sets, it can be shown that bases
always exist. On the other hand, coordinate systems are not unique, and therefore neither are
bases. Nevertheless, the number of elements in a basis is a constant for a given vector space, as we
will demonstrate via a key lemma in class. This will allow us to define dimension, dim(V ), as the
cardinality of an arbitrary basis for V .
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3 Exercises

Exercise 1. Convince yourself that the following are real vector spaces, by specifying natural
choices for ⊕, �, 0V , and additive inverses:

(a) Rd = {[x1 · · · xd]T |x1, . . . , xd ∈ R}, for d ∈ N.

We use component-wise addition and scalar multiplication. Let a ∈ R, xj = [xj1 · · · xjd]T ∈ Rd,
for j = 1, 2. Then define

x1 ⊕ x2 =

x11...
x1d

⊕
x21...
x2d

 :=

x11 + x21
...

x1d + x2d

 , and a� x1 = a�

x11...
x1d

 :=

ax11...
ax1d


Now that these are defined, we can clearly use 0Rd := 0 = [0 · · · 0]T for the additive identity,
and −xj := (−1) � xj for an additive inverse. All the vector space axioms can be verified as
direct consequences of corresponding properties of the real numbers.

(b) For a probability space (Ω,A, P ), the space

L2(P ) = {X : Ω→ R |X measurable,EP (X2) <∞}.

Now we use pointwise addition and scalar multiplication for functions in L2(P ). Let a ∈ R,
X1, X2 ∈ L2(P ), then define X1 ⊕X2 and a�X1 via

(X1 ⊕X2)(ω) := X1(ω) +X2(ω), ∀ω ∈ Ω, and (a�X1)(ω) := aX1(ω), ∀ω ∈ Ω.

For the additive identity, we can use the constant zero random variable 0L2(P ) := 0 (in the sense
of the function that is identically 0 over Ω), and also −X1 is defined via (−1)�X1. Again, the
vector space axioms can be checked using properties of the real numbers.

One more technical detail: we need to ensure L2(P ) is closed under linear combinations! Sup-
pose X1, X2 ∈ L2(P ). Scalar multiplication is easy: if a ∈ R, E[(aX1)

2] = a2E[X2
1 ] < ∞, so

aX1 ∈ L2(P ), by linearity. Addition is a little trickier. Consider the following inequality for
x, y ∈ R:

(x+ y)2 = x2 + 2xy + y2 ≤ x2 + (x2 + y2) + y2 = 2(x2 + y2),

since
0 ≤ (x− y)2 = x2 − 2xy + y2 =⇒ 2xy ≤ x2 + y2.

It follows that

E[(X1 +X2)
2] ≤ E[2(X2

1 +X2
2 )] = 2E[X2

1 ] + 2E[X2
2 ] <∞,

by linearity, so X1 +X2 ∈ L2(P ). Alternatively, as Izzy explained in lab, we can use Cauchy-
Schwarz! We will soon study inner products in lecture: for vector space V , 〈 ·, · 〉 : V × V → R
is a (real) inner product on V if it satisfies certain axioms. We will see that Cauchy-Schwarz
is a general result for any inner product space: if (V, 〈 ·, · 〉) is a real inner product space, and
v1, v2 ∈ V , then |〈v1, v2〉| ≤ ‖v1‖‖v2‖, where ‖vj‖ :=

√
〈vj , vj〉. Now, it turns out that L2(P ) is

an inner product space with 〈X1, X2〉 := E[X1X2]. Therefore we immediately know E[X1X2] ≤√
E[X2

1 ]E[X2
2 ] <∞ when X1, X2 ∈ L2(P ), so E[(X1+X2)

2] = E[X2
1 ]+2E[X1X2]+E[X2

2 ] <∞.
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Exercise 2. Taking V = R2, give examples of a non-empty subset U ⊆ V that is not a subspace,
but that does satisfy

(a) Closure under addition, and remaining vector space properties

Take U = Q2 = {(x1, x2) |x1, x2 ∈ Q}. I’ll leave it to you folks to think about why this example
fails for the remaining property, scalar multiplication.

(b) Closure under scalar multiplication, and remaining vector space properties

Any union of distinct lines through the origin should work. For instance, take

U = {(x, 0) |x ∈ R} ∪ {(0, y) | y ∈ R}.

Same deal as above — you guys convince yourselves this doesn’t satisfy closure under addition.

Exercise 3. Let V be a vector space, and U,W ⊆ V be two linear subspaces. Show that

(a) U ∩W is a linear subspace of V.

Actually, this result holds in greater generality. Let B ⊆ P(V ) be a class of linear subspaces
of V . We will show that V ∗ =

⋂
W∈BW is a linear subspace. First, 0V ∈ V ∗, since 0V ∈ W ,

for all W ∈ B, as these are all subspaces. It remains to show V ∗ is closed under linear
combinations. For any α, β ∈ F and v1, v2 ∈ V ∗, we must have v1, v2 ∈W , for allW ∈ B. Hence,
αv1 + βv2 ∈W , for all W ∈ B, since each W is a subspace. Thus, αv1 + βv2 ∈

⋂
W∈BW = V ∗,

so the intersection is closed under linear combinations, and therefore is a subspace.

(b) U ∪W is a subspace iff U ⊆W or W ⊆ U .

If U ⊆W (or W ⊆ U) then U ∪W = W (or U ∪W = U), which is a subspace.

Conversely, assume that U ∪W is a subspace, and suppose that one set is not contained in the
other. Then there exist v1 ∈ U \W and v2 ∈W \ U . Since U ∪W is a subspace, it must hold
that v1 + v2 ∈ U ∪W , because v1, v2 ∈ U ∪W . There are two cases: (1) if v1 + v2 ∈ U , then
v2 = (v1 + v2)− v1 ∈ U , since U is a subspace; (2) v1 + v2 ∈W , then v1 = (v1 + v2)− v2 ∈W ,
since W is a subspace. Either case represents a contradiction of our choice of v1, v2, so we
conclude that one set must be contained in the other.

Exercise 4. Let V be a vector space, and suppose {v1, . . . , vk} are linearly independent. Show
that 0V 6∈ {v1, . . . , vk}.

We will show the contrapositive. Suppose 0V ∈ {v1, . . . , vk}, and let j ∈ {1, . . . , k} be such that
vj = 0V . Then we can take aj = 1, and a` = 0 for all ` 6= j, so that

k∑
`=1

a`v` = ajvj = vj = 0V .

By definition, we conclude that {v1, . . . , vk} are linearly dependent.
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Exercise 5. Let V be a vector space, and suppose {v1, . . . , vk} are linearly dependent. Show that
there exists 1 ≤ j ≤ k, and scalars a1, . . . , aj−1 such that

vj =

j−1∑
`=1

a`v`,

where a sum from 1 to 0 is defined as 0V .

By linear dependence, there exist scalars a1, . . . , ak ∈ R, not all zero, such that

k∑
`=1

a`v` = 0V . (1)

Consider the set J = {` ∈ {1, . . . , k} | a` 6= 0}, and choose j = max (J ). If j = 1, then by (1) and
the definition of j, we must have

a1v1 = 0V =⇒ v1 = 0V ,

which satisfies the claim by our definition of a sum from ` = 1 to 0. If j ≥ 2, then again by (1) and
our choice of j,

j∑
`=1

a`v` = 0V =⇒ ajvj = −
j−1∑
`=1

a`v`.

Dividing through by aj 6= 0, we obtain

vj =

j−1∑
`=1

(
−a`
aj

)
v`,

proving the claim.
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