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1 Linear algebra review

Let’s recap what we have accomplished thus far in our exploration of linear algebra.

(1) We first defined abstract vector spaces and linear subspaces, then covered basis and dimension.

(2) Last lab we defined linear maps, discussed their invertibility, introduced coordinates, and argued
that for finite-dimensional vector spaces, linear maps can be represented by a matrix. As one
special case, we proved that every linear map T : Rd → Rn can be associated with a (unique)
matrix MT ∈ Rn×d such that T (x) = MTx, for all x ∈ Rd.

(3) In lecture, we introduced inner product spaces (i.e., vector spaces with an associated inner
product), defined orthogonality, orthogonal complements, direct orthogonal sums, and dis-
cussed projections onto finite-dimensional linear subspaces.

Since we have not yet talked about inner product spaces in lab, we now elaborate the results we
have developed for point (3) above.

2 The projection operator

Let (V, 〈·, ·〉) be a real inner product space, V0 ⊆ V a finite-dimensional linear subspace of V . In
several steps, we proved that for every v ∈ V , we could associate a unique vector PV0(v) ∈ V0,
called the projection of v onto V0, satisfying one of the following two equivalent criteria:

• v − PV0(v) ⊥ V0 ⇐⇒ v − PV0(v) ∈ V ⊥0 ⇐⇒ 〈v − PV0(v), w〉 = 0 for all w ∈ V0,

• PV0(v) = arg minw∈V0‖v − w‖.

At the end of lecture 5, we showed that the function PV0 : V → V0 held several nice properties.
Specifically, we proved that PV0 is

(i) Linear: PV0 ∈ L(V, V0),

(ii) Idempotent: PV0 ◦ PV0 = PV0 ,

(iii) Self-adjoint: 〈PV0(v1), v2〉 = 〈v1, PV0(v2)〉, for all v1, v2 ∈ V .

While properties (ii) and (iii) will turn out to be very useful, property (i) is perhaps even more
important, as it allows us to associate PV0 with a projection matrix ! Letting X(1), . . . ,X(d) ∈ Rn
denote the columns of the design matrix, we can set V0 = C(X) = L (X(1), . . . ,X(d)), and consider
the matrix corresponding to the linear map PC(X) : Rn → Rn,

P̂X := MPC(X) ∈ Rn×n,

the famous hat matrix, i.e., the projection matrix for the linear subspace C(X).



We will see that in the linear model, a least squares estimator β̂ must satisfy

Xβ̂ = P̂XY = PC(X)(Y).

In words, this says that the fitted values are the projection of the outcome onto the space spanned
by the columns of the design matrix. As an exercise, given what we learned last lab, think about
what properties (ii) and (iii) of projection imply for the hat matrix P̂X.

Exercise 1. Given vector space V , and a list of linearly independent vectors {v1, . . . , vk} ∈ V ,
we have seen the Gram-Schmidt procedure that produces {v∗1, . . . , v∗k}, an orthogonal basis for
L (v1, . . . , vk). Show that the procedure “fails” if {v1, . . . , vk} are linearly dependent.

By Exercise 5 in Lab 1, we know that linear dependence implies that ∃ j ∈ {1, . . . , k}, and
α1, . . . , αj−1 ∈ F, such that vj =

∑j−1
`=1 α`v`. Without loss of generality, let j be the minimal

such index, so that {v1, . . . , vj−1} are linearly independent. If j = 1, then v1 = 0V and Gram-
Schmidt fails immediately, as v∗1 := v1 = 0V means the resulting set of vectors cannot be non-zero
and orthogonal. Otherwise, at the j-th step, we will compute

v∗j = vj − p(vj |L (v∗1, . . . , v
∗
j−1)) = vj − vj = 0V ,

since vj ∈ L (v1, . . . , vj−1) = L (v∗1, . . . , v
∗
j−1). Again, this fails to produce an orthogonal basis.

Exercise 2. Let (V, 〈·, ·〉) be a real inner product space, and let V0 ⊆ V be a finite-dimensional
linear subspace of V . Show that

‖PV0(v)‖ ≤ ‖v‖, for all v ∈ V.

In other words, projection is a contraction mapping. If you have seen operator norms before, this
is equivalent to the statement that ‖PV0‖op ≤ 1. Recall in the regression setting that EP (Y |X) =
arg ming(Y − g(X))2. Considering the (complete) inner product space

L2(X, Y ) = {g(X, Y ) | g measurable, E(g(X, Y )2) <∞},

its (closed) linear subspace L2(X) = {g(X) | g measurable, E(g(X)2) <∞}, with

〈g1, g2〉 = EP (g1(X, Y )g2(X, Y )),

what does this result say about the effect of conditional expectation on X? What if EP (Y ) = 0?
(Note that projection in this infinite-dimensional setting works just as we have learned!)

For any v ∈ V ,
‖v‖2 = ‖v − PV0(v)‖2 + ‖PV0(v)‖2 ≥ ‖PV0(v)‖2,

by the Pythagorean theorem, as v−PV0(v) ⊥ PV0(v). In the conditional expectation setting, noting
that E(Y |X) = PL2(X)(Y ), this result translates to

E[E(Y |X)2] ≤ E[Y 2].

If actually E(Y ) = 0, then equivalently

Var(E(Y |X)) ≤ Var(Y ),

so conditional expectation decreases variance.
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Exercise 3. Let (V, 〈·, ·〉) be a real inner product space, and let V1 ⊆ V2, where V1 and V2 are
finite-dimensional linear subspaces of V . Show that

PV1 = PV1 ◦ PV2 = PV2 ◦ PV1 ,

and think about what this would mean for the corresponding projection matrices.

The result PV2 ◦PV1 = PV1 , is immediate, as for any v ∈ V , PV1(v) ∈ V1 ⊆ V2, so further projection
onto V2 does nothing. For the other equality, let v ∈ V be arbitrary and we will use the definition.
First PV1(PV2(v)) ∈ V1, by definition of PV1 . Second, for any w ∈ V1,

〈v − PV1(PV2(v)), w〉 = 〈v, w〉 − 〈PV1(PV2(v)), w〉
= 〈v, w〉 − 〈v, PV2(PV1(w))〉
= 〈v, w〉 − 〈v, w〉 = 0

since projection is self-adjoint and w ∈ V1 ⊆ V2. Therefore, v − PV1(PV2(v)) ⊥ V1, and we know
PV1(PV2(v)) = P1(v). In terms of projection matrices, this says that if V1 ⊆ V2,

P̂V1 = P̂V1P̂V2 = P̂V2P̂V1 ,

given what we know about linear map composition and matrix multiplication.

3 Random vectors and matrices

A random vector is simply an ordered collection of random variables. Abstractly, on probability
space (Ω,A, P ), the vector-valued function X : Ω → Rk is called a random vector if and only if
X1, . . . , Xk : Ω → R are random variables (i.e., Borel measurable), where X = [X1 · · · Xk]

T . The
expectation of X is defined to be the vector of expected values of each of its components:

E(X) =

E(X1)
...

E(Xk)

 ∈ Rk,

whenever all the expectations exist. Analogously, M : Ω → Rm×n is a random matrix if each of
its elements is a random variable, the its expectation is the matrix of the element-wise expected
valued, when they exist. The cross-covariance between two random vectors X ∈ Rk, and Y ∈ R`
is the (k × `) matrix given by

Cov(X,Y) = E
[
(X− E(X))(Y − E(Y)T )

]
=


Cov(X1, Y1) Cov(X1, Y2) · · · Cov(X1, Y`)
Cov(X2, Y1) Cov(X2, Y2) · · · Cov(X2, Y`)

...
...

. . .
...

Cov(Xk, Y1) Cov(Xk, Y2) · · · Cov(Xk, Y`)

 ,
and the covariance matrix for the random vector X is the (k × k) matrix

Cov(X) := Cov(X,X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xk)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xk)
...

...
. . .

...
Cov(Xk, X1) Cov(Xk, X2) · · · Var(Xk)

 = E(XXT )−E(X) {E(X)}T .
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Linearity of expectation holds for random vectors and matrices — we will not prove this here, but
you may wish to tackle this as an exercise. Specifically, if A ∈ Rm×n, B ∈ Rp×q are fixed matrices,
and M1, M2 are random (n× p) matrices, then

E(AM1B) = AE(M1)B, and E(M1 + M2) = E(M1) + E(M2).

One consequence of this is if X and Y are random vectors, A, B conformable fixed matrices, and
c, d conformable fixed vectors, then

Cov(AX + c,BY + d) = ACov(X,Y)BT .

Exercise 4. Let M be a square, (n × n), random matrix. Show that tr(E(M)) = E(tr(M)). As a
hint, note that the (i, j)-th element of a matrix M ∈ Rn×n is given by eTi Mej , where ei, ej are the
i-th and j-th canonical basis vectors of Rn, respectively.

Observe that

tr(E(M)) =
n∑
i=1

eTi E(M)ei = E

(
n∑
i=1

eTi Mei

)
= E(tr(M)).

Alternatively, as Beau pointed out, we can ignore the hint and directly use the definition of the
quantities involved. Specifically, the expected value of the trace of a matrix is the expected value
of the sum of its diagonals, which by linearity is the sum of the expected values of the diagonals.
But this is simply the trace of the expected value matrix as we have defined it!

When studying the properties of the least squares estimator under the linear model, we will have
to work with the distribution of quadratic forms. When X is a random k-vector, M ∈ Rk×k a
symmetric matrix, XTMX is said to be a quadratic form in X.

Exercise 5. For such a quadratic form, show that

E(XTMX) = tr(MΣX) + {E(X)}T ME(X),

where ΣX = Cov(X). Note that the variance of a quadratic form is in terms of higher moments of
components of X. As a result, it is much more complicated in the general case, and we will instead
typically work directly with the distribution of quadratic forms, under assumptions.

The key is to abuse the fact that the trace of a scalar (or a 1× 1 matrix) is the scalar itself, then
use the cyclic property of trace. Observe that

E(XTMX) = E(tr(XTMX)), by Exercise 4,

= E(tr(MXXT )), by cyclic property,

= tr(ME(XXT )), by Exercise 4 and linearity

= tr
(
M
{

ΣX + E(X) {E(X)}T
})

,

= tr (MΣX) + tr
(
ME(X) {E(X)}T

)
= tr (MΣX) + {E(X)}T ME(X), by cyclic property,

which we wanted to show.

4



4 The multivariate normal distribution

The random vector X : Ω → Rk is said to have a multivariate normal or Gaussian distribution if
aTX has a univariate normal distribution, for all a ∈ Rk. Letting µ = E(X) and Σ = Cov(X), we
write X ∼ Nk(µ,Σ). Of course, we might want to write down the joint density of this distribution,
but we will avoid this for now as it involves matrix determinant which we have not yet introduced.

Exercise 6. Show that the characteristic function of X ∼ Nk(µ,Σ) is

ϕX(t) = E
(
eit

TX
)

= exp

(
itTµ− 1

2
tTΣt

)
.

Show that this implies BX ∼ Nq(Bµ, BΣBT ), for fixed B ∈ Rq×k.

Recall that if W ∼ N (µ, σ2), then the characteristic function of W is ϕW (t) = exp
(
iµt− t2σ2

2

)
, for

any t ∈ R. By definition of multivariate normality, with t ∈ Rk fixed, W := tTX ∼ N (tTµ, tTΣt).
It follows that

ϕX(t) = E(eiW ) = ϕW (1) = exp

(
itTµ− tTΣt

2

)
,

as claimed. Now for fixed B ∈ Rq×k, and s ∈ Rq,

ϕBX(s) = E
(
eis

TBX
)

= ϕX

(
BT s

)
= exp

(
isTBµ− sTBΣBT s

2

)
,

so BX ∼ Nq(Bµ, BΣBT ).

Partition the random vector X = [XT
1 XT

2 ]T , where X1 is a p-vector and X2 is a q-vector. Let
µj = E(Xj), for j = 1, 2, and let

Σij = Cov(Xi,Xj),

for i, j ∈ {1, 2}. Two fundamental facts from probability theory are

• X1 ⊥⊥ X2 ⇐⇒ Σ12 = 0p×q,

• X2 |X1 ∼ Nq
(
µ2 + Σ21Σ

−1
11 (X1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
.

Finally, we briefly introduce quadratic forms for Gaussian vectors. For Z1, . . . , Zk
iid∼ N (0, 1),

k∑
j=1

Z2
j ∼ χ2

k.

More generally, if we have (Z1, . . . , Zk) independent with Zj ∼ N (µj , 1), for j = 1, . . . , k, we

write W =
∑k

j=1 Z
2
j ∼ χ2

k(δ), where δ =
∑k

j=1 µ
2
j . We say that W has a non-central chi-squared

distribution with k degrees of freedom and non-centrality parameter δ. If X ∼ Nk(µ, σ2Ik), we will

see that, for symmetric matrix A ∈ Rk×k, XTAX
σ2 ∼ χ2

r(δ), with δ = µTAµ
σ2 , iff A is idempotent with

rank r. To understand this fully, we will need to derive the spectral decomposition of symmetric
matrix A. As a teaser question, how would you go about simulating from a general X ∼ Nk(µ,Σ),
without using mvrnorm?
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