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1 Matrix review

Recall that for generic matrix A € R™*" written as
AT
A= | :[A(l) A(n)L
AL

we have defined the column space of A,

C(A) =LA, A =8N "0 A0 [y, w, € R ) = {Ax|x € R"} =Tm(T4) CR™,
j=1

the nullspace of A as
N(A) = {xeR"|Ax =0} = Ker(T4) C R",

and the row space of A as

R(A) =C(AT) = L(Ay,..., Ap) = {i yi A

yl?"'uymeR} an

Finally, the rank of a matrix is conventionally defined as rank(A) = dim(C(A)).

Exercise 1. In your first homework, you show that for A € R™*" A(A) = R(A)*. Combine this
with the rank-nullity theorem for linear maps to show that

dim(C(A)) = dim(R(A)).
This exercise finally justifies that matrix rank can be defined as either of these two quantities.
Note that R(A) C R™ is a finite-dimensional subspace, so from the first homework,
n = dim(R(A)) + dim(R(A)™>).

Moreoever, by the rank-nullity theorem applied to the linear transformation 74 associated with A,
we find

n = dim(Im(74)) + dim(Ker(74))
= dim(C(A)) + dim(N(A)).

Using the fact N'(A) = R(A)*, and combining the two equalities above, we obtain
dim(C(A)) = dim(R(A)),

as claimed.



Exercise 2. Let A € R™** B e R¥*". Show that
rank(AB) < min {rank(A), rank(B)} .
If k=n (ie, A€ R™" B ecR"™™") and B is invertible, show that rank(AB) = rank(A).
Note that C(AB) C C(A), since ABx = A(Bx) € C(A), for all x € R". Therefore,
rank(AB) = dim(C(AB)) < dim(C(A)) = rank(A).
For the other inequality, using Exercise 1,
rank(AB) = rank(BT AT) < rank(B”) = rank(B),

using the first inequality again. If & = n and B is invertible, we will show C(AB) = C(A), a stronger
result. Given what we showed above, we check C(A) C C(AB): for x € R",

Ax = A(BB Yx = AB(B~'x) € C(AB),

as claimed.

2 General normal equations

Recall the general setup we had for the normal equations. Let (V,(:, -)) be a real inner product
space. Let {v1,...,vx} C V, and consider Vp = Z(v1,...,v;). For any v € V, by definition of
projection, there exists o = [ay --- a]7 € RF such that Py, (v) = Zle a;v;. We showed that o
is a solution to the so-called normal equations,

Ma = v, (1)
where the Gram matrix M € R¥** is given by [M]; ; = (v;,v;), and v = [(v,v1) -+ (v, vg)]T € RF.
In a lemma, we proved that

e There always exists a solution to (1).

e There is a unique solution if and only if rank(M) = k.

e There is a unique solution if and only if {vi,...,v;} are linearly independent.

We then focused on the case where the solution was indeed unique, i.e., the “full rank” setting.
In this case, the matrix M represents a bijective linear map in £(RF, R¥), which allows us to talk
about the inverse of M through the inverse of its associated linear map. In the full rank setting,
we have a formula for the solution to (1), given by

a=M1v

We review next how population and sample least squares can be viewed as special cases of this
general setup!



3 Population least squares

Recall that whenever it exists,
Ep[Y | X] = argmin, ||V — g(X)||1,(p) = arg min, Ep{(¥ — (X)),
In the linear model, where Ep[Y | X] = X7 3(P), we must then have
XTB(P) = argmingegal|Y — X B|7,p) = Pri(Y),
where Vy = Z(X1,...,X4) C Lo(P), since XT3 = 2?21 B;X;. In this case, (1) becomes
Ep[XXT]61 = Ep[XY),

for any B' such that X737 = X73(P). The solution is unique (i.e., 81 = B(P)) if and only if
X1,...,Xg are linearly independent in Lo(P). In this case,

-1
B(P) = {Ep[XXT]}  Ep[XY].
Lemma 1. The random variables 1, X1, ..., X, are linearly independent in Lo(P) if and only if
EX = Cov p(X)

is invertible. Equivalently, this holds iff ¥x has full (column) rank.

4 Sample least squares
Similar to the population setting, we have seen that a sample least squares estimator of B(P) —
an empirical risk minimizer under square loss in the linear model — must satisfy
XB* = argmingegal|Y — X33,

where now we use the standard Euclidian norm. This means that for any such minimizer,

XB* = Pexy (Y),
where C(X) = Z(XM, ..., X)) C R”. In this setting, (1) becomes

xTxg* = x7Y.

When XM, ... X@ are linearly independent in R” (i.e., rank(X) = d), there is a unique solution

given by the familiar formula R
B=X'x)xTy.

Note that this gives us the hat matrix in the full rank setting: Px = X(XTX) X7,



Exercise 3. Recall that for a linear subspace V' C R" (e.g., V = C(X)), we can talk about the
projection matrix Py € R"*" i.e., Py(y) = Pyy, for all y € R™.

(a) Show using properties of projection that ﬁv is symmetric and idempotent.

For symmetry of Py, we use that Py is a self-adjoint operator: the (7, j)-th element of Py is
(oY Prey” = (e, Pu(ef")) = (Pr(e™). ) = {ef Y Bl = {ef Y Py,
which is the (j,7)-th element of ]3\/- To see that JBV is idempotent, we again use the corre-
sponding fact already seen for Py :
PyPyx = Py(Py(x)) = Py(x) = Pyx, for all x € R™.
It follows that ]3\2/ = ﬁvﬁv = ﬁv.
(b) Show that rank(ﬁv) = dim(V).
We will show that C(P) = V, so that
rank(Py) = dim(C(Py)) = dim(V).

First, C(Py) C V, since N
Pyx = Py(x) € V, for all x € R".

Conversely, if z € V, then z = Py (z) = Pyz € C(Py).

Exercise 4. Let V be a vector space, and Vy C V; two finite-dimensional linear subspaces of V.
Show that
PVOLOVI - PV1 _P‘/O.

Then show that this implies PVOJ_ = Iy — Py,, where Iy is the identity map on V.
It is sufficient to show, for arbitrary v € V,
(i) Pri(v) = Piy(v) € 5 NV, and
(it) v = (Py; (v) = Py (v)) L V5" N VA
For (i), clearly Py, (v) — Py,(v) € Vi, since Vp C Vi and Vj is a subspace. For arbitrary w € Vp,
(P (v) = Pro (0),0) = (Piy (v),w0) — (Pyy (0),w0) = (0, Py () — (0, Prg () = (v, ) — (v, w) = 0,

S0 PVl(U) _PVO(U) € VOL = PV1(U) _PVO(U) S VE)J‘QVL

Next, for (ii) take w € Vg~ N V; arbitrary. Then

(v = (Py; (v) = Pigy (v)), w) = (v = Py; (v), w) + (Py, (v), w) =0,
——— ——
eVt €Vo
since w € Vi and w € Vij-. Therefore, v — (Py, (v) — Py, (v)) L V5-N V4. Finally, to see the corollary,

take Vi = V itself, then Py, = Py = Iy. Note that as a projection map, Iy — Py, is linear,
idempotent, and self-adjoint.



Exercise 5. Suppose that the design matrix X is full column rank, i.e., X, ... X are linearly
independent. For j € {1,...,d} fixed, define

XL . x@) _ PC(X,j)(X(j)) = (I, — ﬁx,j)X(j),
where
C(X_;) =2(XWD, . . XU-D xG+H) x@)
which is the column space of X after deleting the j-th column. In this exercise, we will show that
the sample least squares regression coefficients 8 = (X7 X)"'X7Y satisfy
—~ (Y, X)Ly
T X0 XL

Recalling that Pe(x)(Y) = XB, proceed in the following steps:
(a) Argue that XU+ e C(X).
This holds because XU) € C(X), PC(Xij)(X(j)) € C(X_;) CC(X), and C(X) is a linear subspace.
(b) Show that (Pe(x)(Y), XUty = (Y, XUy,
Since Pe(x is self-adjoint, (Pe(so(Y), XUd) = (Y, Pogsy (X)) = (Y, X)Ly using (a).
(¢) Show that also (Peex)(Y), X0y = (XL X015,

To see this, we use Exercise 4 to note that I, — ﬁxﬂ, is the projection matrix onto C(X_;)+
so is symmetric and idempotent. Hence

)

. NT
(Pego (Y), XUy = {X(])’L} XB =

where we used that (I, — ﬁxij)X(@ = Pc(X_j)J_(X(E)) =0, for all ¢ # j.

(d) Conclude and interpret. Bonus: what does this result say if XD, X are orthogonal?
Combining the two equalities in (b) and (c) tells us that

—~ <Y’X(j)7i>

T XO.L XLy

as claimed — note that (X @)+ X)Ly > 0 is guaranteed by linear independence of the columns
of X. Since this formula is the least squares coefficient for a regression of Y on XUt we
interpret the result as saying that to obtain Bj, we could equivalently have regressed X on
the other columns of X, took the residuals, and regressed Y on these residuals.

Finally, when X1, ... X are orthogonal, we know XUt =X for j =1,...,d. In other
words, we can obtain the multivariate regression sample least squares coefficients by running
univariate regressions!
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