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1 Matrix review

Recall that for generic matrix A ∈ Rm×n, written as

A =

A
T
1
...
AT

m

 =
[
A(1) · · · A(n)

]
,

we have defined the column space of A,

C(A) := L (A(1), . . . , A(n)) =


n∑

j=1

xjA
(j)

∣∣∣∣x1, . . . , xn ∈ R

 =
{
Ax
∣∣x ∈ Rn

}
= Im(TA) ⊆ Rm,

the nullspace of A as
N (A) :=

{
x ∈ Rn

∣∣Ax = 0
}

= Ker(TA) ⊆ Rn,

and the row space of A as

R(A) := C(AT ) = L (A1, . . . , Am) =

{
m∑
i=1

yiAi

∣∣∣∣ y1, . . . , ym ∈ R

}
⊆ Rn.

Finally, the rank of a matrix is conventionally defined as rank(A) := dim(C(A)).

Exercise 1. In your first homework, you show that for A ∈ Rm×n, N (A) = R(A)⊥. Combine this
with the rank-nullity theorem for linear maps to show that

dim(C(A)) = dim(R(A)).

This exercise finally justifies that matrix rank can be defined as either of these two quantities.

Note that R(A) ⊆ Rn is a finite-dimensional subspace, so from the first homework,

n = dim(R(A)) + dim(R(A)⊥).

Moreoever, by the rank-nullity theorem applied to the linear transformation TA associated with A,
we find

n = dim(Im(TA)) + dim(Ker(TA))

= dim(C(A)) + dim(N (A)).

Using the fact N (A) = R(A)⊥, and combining the two equalities above, we obtain

dim(C(A)) = dim(R(A)),

as claimed.



Exercise 2. Let A ∈ Rm×k, B ∈ Rk×n. Show that

rank(AB) ≤ min {rank(A), rank(B)} .

If k = n (i.e., A ∈ Rm×n, B ∈ Rn×n) and B is invertible, show that rank(AB) = rank(A).

Note that C(AB) ⊆ C(A), since ABx = A(Bx) ∈ C(A), for all x ∈ Rn. Therefore,

rank(AB) = dim(C(AB)) ≤ dim(C(A)) = rank(A).

For the other inequality, using Exercise 1,

rank(AB) = rank(BTAT ) ≤ rank(BT ) = rank(B),

using the first inequality again. If k = n and B is invertible, we will show C(AB) = C(A), a stronger
result. Given what we showed above, we check C(A) ⊆ C(AB): for x ∈ Rn,

Ax = A(BB−1)x = AB(B−1x) ∈ C(AB),

as claimed.

2 General normal equations

Recall the general setup we had for the normal equations. Let (V, 〈·, ·〉) be a real inner product
space. Let {v1, . . . , vk} ⊆ V , and consider V0 = L (v1, . . . , vk). For any v ∈ V , by definition of
projection, there exists α = [α1 · · · αk]T ∈ Rk such that PV0(v) =

∑k
j=1 αjvj . We showed that α

is a solution to the so-called normal equations,

Mα = ν, (1)

where the Gram matrix M ∈ Rk×k is given by [M]i,j = 〈vi, vj〉, and ν = [〈v, v1〉 · · · 〈v, vk〉]T ∈ Rk.
In a lemma, we proved that

• There always exists a solution to (1).

• There is a unique solution if and only if rank(M) = k.

• There is a unique solution if and only if {v1, . . . , vk} are linearly independent.

We then focused on the case where the solution was indeed unique, i.e., the “full rank” setting.
In this case, the matrix M represents a bijective linear map in L(Rk,Rk), which allows us to talk
about the inverse of M through the inverse of its associated linear map. In the full rank setting,
we have a formula for the solution to (1), given by

α = M−1ν

We review next how population and sample least squares can be viewed as special cases of this
general setup!
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3 Population least squares

Recall that whenever it exists,

EP [Y |X] = arg ming‖Y − g(X)‖L2(P ) = arg mingEP [(Y − g(X))2].

In the linear model, where EP [Y |X] = XTβ(P ), we must then have

XTβ(P ) = arg minβ∈Rd‖Y −XTβ‖2L2(P ) = PV0(Y ),

where V0 = L (X1, . . . , Xd) ⊆ L2(P ), since XTβ =
∑d

j=1 βjXj . In this case, (1) becomes

EP [XXT ]β† = EP [XY ],

for any β† such that XTβ† = XTβ(P ). The solution is unique (i.e., β† ≡ β(P )) if and only if
X1, . . . , Xd are linearly independent in L2(P ). In this case,

β(P ) =
{
EP [XXT ]

}−1 EP [XY ].

Lemma 1. The random variables 1, X1, . . . , Xd are linearly independent in L2(P ) if and only if

ΣX = CovP (X)

is invertible. Equivalently, this holds iff ΣX has full (column) rank.

4 Sample least squares

Similar to the population setting, we have seen that a sample least squares estimator of β(P ) —
an empirical risk minimizer under square loss in the linear model — must satisfy

Xβ∗ = arg minβ∈Rd‖Y − Xβ‖2,

where now we use the standard Euclidian norm. This means that for any such minimizer,

Xβ∗ = PC(X)(Y),

where C(X) = L (X(1), . . . ,X(d)) ⊆ Rn. In this setting, (1) becomes

XTXβ∗ = XTY.

When X(1), . . . ,X(d) are linearly independent in Rn (i.e., rank(X) = d), there is a unique solution
given by the familiar formula

β̂ = (XTX)−1XTY.

Note that this gives us the hat matrix in the full rank setting: P̂X = X(XTX)−1XT .

3



Exercise 3. Recall that for a linear subspace V ⊆ Rn (e.g., V = C(X)), we can talk about the
projection matrix P̂V ∈ Rn×n, i.e., PV (y) = P̂V y, for all y ∈ Rn.

(a) Show using properties of projection that P̂V is symmetric and idempotent.

For symmetry of P̂V , we use that PV is a self-adjoint operator: the (i, j)-th element of P̂V is

{e(n)i }
T P̂V e

(n)
j = 〈e(n)i , PV (e

(n)
j )〉 = 〈PV (e

(n)
i ), e

(n)
j 〉 = {e(n)i }

T P̂ T
V e

(n)
j = {e(n)j }

T P̂V e
(n)
i ,

which is the (j, i)-th element of P̂V . To see that P̂V is idempotent, we again use the corre-
sponding fact already seen for PV :

P̂V P̂V x = PV (PV (x)) = PV (x) = P̂V x, for all x ∈ Rn.

It follows that P̂ 2
V = P̂V P̂V = P̂V .

(b) Show that rank(P̂V ) = dim(V ).

We will show that C(P̂ ) = V , so that

rank(P̂V ) = dim(C(P̂V )) = dim(V ).

First, C(P̂V ) ⊆ V , since
P̂V x = PV (x) ∈ V, for all x ∈ Rn.

Conversely, if z ∈ V , then z = PV (z) = P̂V z ∈ C(P̂V ).

Exercise 4. Let V be a vector space, and V0 ⊆ V1 two finite-dimensional linear subspaces of V .
Show that

PV ⊥0 ∩V1
= PV1 − PV0 .

Then show that this implies PV ⊥0
= IV − PV0 , where IV is the identity map on V .

It is sufficient to show, for arbitrary v ∈ V ,

(i) PV1(v)− PV0(v) ∈ V ⊥0 ∩ V1, and

(ii) v − (PV1(v)− PV0(v)) ⊥ V ⊥0 ∩ V1.

For (i), clearly PV1(v)− PV0(v) ∈ V1, since V0 ⊆ V1 and V1 is a subspace. For arbitrary w ∈ V0,

〈PV1(v)− PV0(v), w〉 = 〈PV1(v), w〉 − 〈PV0(v), w〉 = 〈v, PV1(w)〉 − 〈v, PV0(w)〉 = 〈v, w〉 − 〈v, w〉 = 0,

so PV1(v)− PV0(v) ∈ V ⊥0 =⇒ PV1(v)− PV0(v) ∈ V ⊥0 ∩ V1.

Next, for (ii) take w ∈ V ⊥0 ∩ V1 arbitrary. Then

〈v − (PV1(v)− PV0(v)), w〉 = 〈v − PV1(v)︸ ︷︷ ︸
∈V ⊥1

, w〉+ 〈PV0(v)︸ ︷︷ ︸
∈V0

, w〉 = 0,

since w ∈ V1 and w ∈ V ⊥0 . Therefore, v− (PV1(v)−PV0(v)) ⊥ V ⊥0 ∩V1. Finally, to see the corollary,
take V1 = V itself, then PV1 ≡ PV ≡ IV . Note that as a projection map, IV − PV0 is linear,
idempotent, and self-adjoint.
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Exercise 5. Suppose that the design matrix X is full column rank, i.e., X(1), . . . ,X(d) are linearly
independent. For j ∈ {1, . . . , d} fixed, define

X(j),⊥ := X(j) − PC(X−j)(X
(j)) = (In − P̂X−j )X

(j),

where
C(X−j) := L (X(1), . . . ,X(j−1),X(j+1), . . . ,X(d)),

which is the column space of X after deleting the j-th column. In this exercise, we will show that
the sample least squares regression coefficients β̂ = (XTX)−1XTY satisfy

β̂j =
〈Y,X(j),⊥〉
〈X(j),⊥,X(j),⊥〉

.

Recalling that PC(X)(Y) = Xβ̂, proceed in the following steps:

(a) Argue that X(j),⊥ ∈ C(X).

This holds because X(j) ∈ C(X), PC(X−j)(X
(j)) ∈ C(X−j) ⊆ C(X), and C(X) is a linear subspace.

(b) Show that 〈PC(X)(Y),X(j),⊥〉 = 〈Y,X(j),⊥〉.

Since PC(X) is self-adjoint, 〈PC(X)(Y),X(j),⊥〉 = 〈Y, PC(X)(X(j),⊥)〉 = 〈Y,X(j),⊥〉, using (a).

(c) Show that also 〈PC(X)(Y),X(j),⊥〉 = 〈X(j),⊥,X(j),⊥〉β̂j .

To see this, we use Exercise 4 to note that In − P̂X−j is the projection matrix onto C(X−j)⊥,
so is symmetric and idempotent. Hence

〈PC(X)(Y),X(j),⊥〉 =
{
X(j),⊥

}T
Xβ̂ =

{
X(j)

}T
(In − P̂X−j )

TXβ̂

=
{
X(j),⊥

}T
(In − P̂X−j )Xβ̂

=
{
X(j),⊥

}T
(In − P̂X−j )

d∑
`=1

X(`)β̂`

=
{
X(j),⊥

}T
(In − P̂X−j )X

(j)β̂j

= 〈X(j),⊥,X(j),⊥〉β̂j ,

where we used that (In − P̂X−j )X
(`) = PC(X−j)⊥(X(`)) = 0, for all ` 6= j.

(d) Conclude and interpret. Bonus: what does this result say if X(1), . . . ,X(d) are orthogonal?

Combining the two equalities in (b) and (c) tells us that

β̂j =
〈Y,X(j),⊥〉
〈X(j),⊥,X(j),⊥〉

,

as claimed — note that 〈X(j),⊥,X(j),⊥〉 > 0 is guaranteed by linear independence of the columns
of X. Since this formula is the least squares coefficient for a regression of Y on X(j),⊥, we
interpret the result as saying that to obtain β̂j , we could equivalently have regressed X(j) on
the other columns of X, took the residuals, and regressed Y on these residuals.

Finally, when X(1), . . . ,X(d) are orthogonal, we know X(j),⊥ ≡ X(j), for j = 1, . . . , d. In other
words, we can obtain the multivariate regression sample least squares coefficients by running
univariate regressions!
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