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1 Motivation and Spectral Theorem

In our discussion of linear models, we saw that in order to perform inference on the regression
parameters β(P ), it would help to be able to characterize the distribution of quadratic forms. In
particular, we saw that

‖β̂ − β(P )‖2 = εTA(X)ε,

where A(X) = X(XTX)−2XT ∈ Rn×n is symmetric, and ε |X ∼ N (0, σ2In). The motivation for
spectral decomposition was as follows: if V = [v1 · · · vn] ∈ Rn orthogonal (i.e., V TV = In),
Λ = diag(λ1, . . . , λn) diagonal, and

A(X) = V ΛV T =

n∑
i=1

λiviv
T
i ,

then V T ε |X ∼ N (0, σ2In) would imply

εTA(X)ε |X ∼ σ2
n∑
i=1

λiχ
2
1,i(0), where χ2

1,i(0) ⊥⊥ χ2
1,j(0) for all i 6= j.

Well, it turns out that A(X) being symmetric guarantees the existence of such a decomposition!

Theorem 1 (Spectral Theorem). Let A ∈ Rm×m be a symmetric real matrix. Then there exist
λ1, . . . , λm ∈ R (the eigenvalues of A), and an orthonormal basis v1, . . . , vm ∈ Rm of Rm, such that

A =
m∑
i=1

λiviv
T
i .

Equivalently, for such A, there exists Λ = diag(λ1, . . . , λm) ∈ Rm×n, V ∈ Rm×m with V TV = Im
such that

A = V ΛV T .

The correspondence between these equivalent versions is that V = [v1 · · · vm].

Exercise 1. Let A ∈ Rm×m be a symmetric matrix with eigenvalues λ1, . . . , λm. Show that

tr(A) =

m∑
i=1

λi.



Exercise 2. Let D = diag(d1, . . . , dm) ∈ Rm×m. Show that rank(D) =
∑m

i=1 1(di 6= 0). That is,
the rank of a diagonal matrix is the number of its non-zero diagonal elements.

Exercise 3. Recall from last lab that if B ∈ Rm×n, and C ∈ Rn×n is invertible, then

rank(BC) = rank(B).

Use this and the previous exercise to show that for any symmetric matrix A, its rank is equal to
the number of its non-zero eigenvalues.

2 Matrix Square Root

Let A ∈ Rm×m. We say A is positive semi-definite if for all x ∈ Rm,

xTAx ≥ 0.

We call A (strictly) positive definite if for all x ∈ Rm with x 6= 0,

xTAx > 0.

Exercise 4. Let A ∈ Rm×m be symmetric. Show that A is positive (semi-)definite if and only if
the eigenvalues of A are all positive (non-negative).
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Let now A ∈ Rm×m be a symmetric, positive semi-definite matrix, and let A = V ΛV T be its
spectral decomposition, with Λ = diag(λ1, . . . , λm) the matrix of real non-negative eigenvalues.
For such a matrix, by Exercise 4 we can define the square root of A as

A1/2 := V Λ1/2V T ,

where Λ1/2 = diag(
√
λ1, . . . ,

√
λm). As desired, we have

A1/2A1/2 = V Λ1/2V TV Λ1/2V T = V Λ1/2Λ1/2V T = V ΛV T = A.

For an invertible symmetric matrix A = V ΛV T , by Exercise 3 we know that all eigenvalues are

non-zero, so the inverse of A must be given by A−1 = V Λ−1V T , where Λ−1 = diag
(

1
λ1
, . . . , 1

λm

)
.

Therefore when A is symmetric, positive semi-definite and invertible (thus strictly positive definite),
we can even define

A−1/2 := V Λ−1/2V T .

This matrix is both the square root of A−1 and the inverse of A1/2. These ideas will be useful in
our study of general linear hypothesis testing in the coming weeks.

3 Fisher-Cochran Theorem

In the linear model, the sample least squares coefficients β̂ are a linear function of the data Y, and
in the homoscedastic setting the maximum likelihood estimate of the variance σ̂2 is a quadratic
form in Y. Under an assumption of normality for the data, we seek to understand the distribution
of linear functions and quadratic forms of multivariate normal random vectors. This is the content
of the Fisher-Cochran theorem, which we proved in class.

Theorem 2 (Fisher-Cochran). Let Z ∼ N (0, Im) be standard multivariate normal.

(i) Let A ∈ Rm×m be symmetric. Then ZTAZ ∼ χ2
r(0) if and only if A is idempotent and

rank(A) = r.

(ii) Let A1, A2 ∈ Rm×m be symmetric and idempotent. Then ZTA1Z ⊥⊥ ZTA2Z if and only if
A1A2 = 0m×m.

(iii) Let A ∈ Rm×m be symmetric and idempotent, and let B ∈ Rk×m. Then ZTAZ ⊥⊥ BZ if and
only if ABT = 0m×k.

Exercise 5. Recall the classic probability theory result: if X1, . . . , Xn
iid∼ N (µ, σ2), then X ⊥⊥ S2,

where S2 = 1
n−1

∑n
i=1(Xi −X)2. Use the (much more powerful) Fisher-Cochran theorem to prove

this fact.
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Exercise 6. In proving the ‘only if’ component of part (ii) in Fisher-Cochran, we needed to argue
that if Z ∼ N (0, Im), A1, A2 ∈ Rm×m symmetric and idempotent, and ZTA1Z ⊥⊥ ZTA2Z, then
A1A2 = 0m×m. We first said that by independence

ZT (A1 +A2)Z = ZTA1Z + ZTA2Z ∼ χ2
rank(A1)+rank(A2)

(0).

Since A1 +A2 is symmetric, we used Fisher-Cochran (i) to deduce that A1 +A2 is idempotent and

rank(A1 +A2) = rank(A1) + rank(A2). (1)

In class, we followed a direct but tricky argument to show that A1A2 = 0. Now, we outline a linear
algebraic argument to come to the same conclusion. Take for granted the following fact: if V is a
finite-dimensional vector space, and U,W ⊆ V are linear subspaces, then

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ),

where U +W = {u+ w |u ∈ U,w ∈W}.

(a) Show that rank(A1 +A2) ≤ dim(C(A1) + C(A2)). By the above fact, this will imply

rank(A1 +A2) ≤ rank(A1) + rank(A2)− dim(C(A1) ∩ C(A2)).

(b) Combine (1) and (a) to compute dim(C(A1) ∩ C(A2)).

(c) Take for granted that C(A1) = [C(A1) ∩ C(A2)]⊕
[
C(A1) ∩ C(A2)

⊥].
(Bonus: I am having trouble figuring this out — if you have a proof, let me know!)

(d) Argue from (b) and (c) that C(A1) ⊆ C(A2)
⊥ = N (AT2 ) = N (A2).

(e) Conclude that A2A1 = A1A2 = 0m×m.
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