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1 Review of general linear hypothesis testing

In the linear model
Ep(Y |X) = X"B(P),

assuming homoscedastic normal data (i.e., Y —Ep(Y | X) | X ~ N(0,0?)), one may wish to perform
inference on any wild function of B(P), e.g., x(8) = <sin(,81),Z§l:1 B;-l). In general, it is very

difficult to achieve ezact inference in this setting, without further restrictions on x/(-).

Perhaps unsurprisingly, there is one class of functions of the regression parameters with very well-
characterized distributions — linear functions! In particular, let A € R9%?, and consider

X(B) = AB.

Given the sample least squares estimator ,B, a natural estimator of x(B(P)) is X = A,[Ai. We have
already seen under assumptions (A’) and (B), (C), (D), that B|X ~ Ng(B(P),c?(XTX)™1), so by

properties of normal random vectors,
X = AB|X ~ N, (AB(P),s2A(XTX)~1AT).
Last lecture, we encountered the following problem: how should we test the null hypothesis
Ho : AB(P) = 0y,

under the typical assumptions? This is known as a general linear hypothesis test, since we are
asking whether there is additional linear structure among the components of 3(P), encoded in the
q rows of A. Assuming rank(A) = ¢, and defining ¥ = 02 A(XTX)"1 AT, we saw that X is strictly
positive definite (i.e., invertible and positive semi-definite / “non-negative definite”). Therefore,
using what we developed last lab, we could consider the rescaled random vector

Hyp

ST2AB|X ~ Ny(S7V2AB(P), 1,) 2 Ny(0,,1,).

This is convenient as taking the squared norm of a standard multivariate normal vector, we get a
(central) chi-squared distribution:
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Note, however, that since o2

construct a hypothesis test.

is typically unknown, we are still not quite ready to use this to



One obvious idea is to plug in the (unbiased) estimator 52 = —L||Y — XBHQ =L YT(I,- ]3X)Y,
and see if we can characterize the distribution of the statistic under Hy. Recall that

1 . 1 -
Y (I = P)Y = €' (I~ Po)e | X~ 13 _y(0),

where € = Y — XB(P), since (I, — Px) is symmetric, idempotent, and has rank n — d when the
=2
columns of X are linearly independent. In other words, ("_U% | X ~ x2_,(0). We have seen that by

Fisher-Cochran, the linear function ,@ and the quadratic function &2

o are independent (conditional
on the covariates X). Therefore,
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Given this test statistic, we can construct a standard F-test, that rejects Hy with probability o un-

der the null hypothesis. Specifically, we should reject when F' > F, ,,_41-4(0), where Fj, ;,_41-4(0)
is the (1 — a)-th quantile of the central F' distribution with degrees of freedom ¢ and n — d.

= F;n—a(0), as the two chi-squared variables are independent.

2 An alternative perspective

The linear model, equivalently stated in terms of the n observations in our sample, is

d
Ep(Y|X) =XB(P) =) XU)g;(P) € C(X) CR™
j=1

As we noted above, though, the null hypothesis, Hy : AB(P) = 0,4, imposes ¢ additional linear
constraints on the parameter vector 3(P). That is, under the null hypothesis, the mean of Y given
X lies in a linear subspace of C(X):

Vy = {Xﬁ‘ﬁ eRd,Aﬁzoq} = {XB|8 € N(4)} C C(X).

The null hypothesis is therefore equivalent to Hy : Ep(Y | X) € V. This is an instance of a general
subspace test setting, as we wish to know whether the (conditional) mean of the outcome lies in a
particular subspace (i.e., Vj) of a larger assumed space (i.e., C(X)). We study the abstract problem
in the next section.



3 General subspace hypothesis testing

Consider the unconditional homoscedastic normal data setting, Y ~ N, (u, 0%1,). Let Vo,V C R"
be two linear subspaces of R™ such that V5 C V. We will consider testing

Hy:pe€Vyversus Hy : p € V\ Vj.

The key idea will be to compare residuals under the null hypothesis with residuals from the model
with no restrictions beyond g € V. Specifically, let

e =Y — Py (Y) = Py (Y), and eV = Y — Py (Y) = Py (Y),
and we will consider ||e(?)—e()||? being large as evidence against Hy. To understand the distribution

of this quantity, the following exercise is crucial.

Exercise 1. Let U, W be finite-dimensional subspaces of vector space V', with U C W. Show that
W=UaWnUh).

To do this, recall from the first homework that for any vector space V', V; C V a finite-dimensional
linear subspace, V = V) & VOL. Now, replace the larger vector space V with W and the subspace
Vo with U. Be careful with the symbol L.

By definition, the orthogonal complement of U, considered as a linear subspace of the vector space
W, is given by
USW ={we W |(w,u) =0,Yu e U} =W NU",

where U™ is the orthogonal complement with respect to the larger vector space V. From a result
from the first homework, we therefore have W = U @ U-W =U @ (W nUL).

Note the following corollaries to Exercise 1, which follow from results in the first homework:
(a) Vo CV means V =V @ (VNV5), and V+ C Vgt means Vg- = V@ (VN V5h);
(b) Py = Py, + Pyays, and Py = Pyy + Py (see also Exercise 4 of Lab 4);
(c) dim(V) = dim(Vp) + dim(V NVgt) = dim(V N V5h) = dim(V) — dim(Vp).
As a consequence of corollary (b), we find

e — e®2 = [Py (Y) = Pry (V)| = [Py (V)2 = YT Py Y.
Moreover, again by corollary (b),

Y Py Y = Y'PL Y - YTPLY = e — e
Let e =Y — u, then
e — )2 = [Pyt (1 + €2 2 [ Pyt ()2 = € Py

since p € Vp under Hy. Combining these facts, and using corollary (c), we see that

e —lle™|* my (e\T 5 € ) o,
o2 N (;) PVHVOJ_ <;) ~ Xrank(ﬁVmVOJ_)(O) = Xdim(V)—dim(VO)(())'



Exercise 2. In the above setting, show that the unbiased estimator of o2,
o Y R e
u n — dim(V) n —dim(V)’
is independent of ||e(®) — e(M||2. Use this to justify the F-test of Hy based on

ez = ||eM]|2 im — dim
iy = U= I OIF) [(dim (V) - dim(36) "

Note that (n — dim(V))52 = YZ(I,, — Py)Y = €7 (I, — Py)e, and
le® — eM|2 = YTy Y = By — Byy)el® +2(u, (B — Py)e) + | (B — Py ul?

= g9((Pv — Py, )e),
so it is sufficient by Fisher-Cochran to show (I, — Py)(Py — ]3‘/0) = 0,,xn. But this holds as
(In — Pv)(Pv — Py,) = Py — Py, — P2 + Py Py, = O,

since ]3\/]3V0 = ]3‘/0. Therefore, the test statistic Fyy;, above can also be written

o, Ho 1 el'(Py — ﬁvo)e 1 €l(I, — Py)e 7 (0)
VVo — o2 dlm(V) — diln(‘/()) b) n_ dim(V) dim(V)—dim(Vp),n—dim(V) :

g
4 Return to linear models

As argued in Section 2 above, the general linear hypothesis test can be stated as a general subspace
hypothesis of
Hy:Ep(Y|X) eV versus Hy : Ep(Y |X) € V\ Vp, (2)

where V) = {XB |8 € N(A)} CV CR", and V =C(X).
Lemma 1. Assuming X has full column rank, dim(Vj) = d — ¢ and dim(V') = d.

Proof. That dim(V) = dim(C(X)) = d is an assumption of the lemma, so we need only show the
other equality. By rank-nullity, we know
d =rank(A4) + dim(N(A)) = dim(N(A)) =d —gq,

since we have assumed rank(A) = ¢q. Let by,...,bs_, € R? be a basis for N(A). It suffices to
show that Xbq,...,Xb,_, is a basis for V. Clearly these vectors span Vp, since by, ..., by_, spans
N(A). It remains to establish linear independence. To that end, let oy, ..., aq—4 € R satisfy

d—q d—q
On = Zanbj =X Zoz]b]
j=1 j=1

Then we know Z;t‘f a;jb; € N(X), but by rank-nullity
dim(N (X)) =d —rank(X) =d — d = 0.
This implies that N(X) = {04}, so

d—q

D abi=04 = a1=--=ag4=0,

j=1
since by,...,bg_, are linearly independent. Thus, Xby,...,Xby_, are linearly independent, as
claimed. 0



In order to derive the test statistic Fy,y, in this setting, it remains to find more explicit forms for
|e® —eM||2 and ||eM||2. The latter term is easy, since
e = 1Py (Y)I? = | Pegrye (V)P = YT (I, = P0)Y = (n - d)a.

u

Lemma 2. When rank(X) = d, rank(4) = ¢, e —eW)||2 = YT P, Y, where U = X(XTX) AT,
and Py is the matrix corresponding to projection onto C(U).

Proof. (Caution: tricky proof!) Since
le©@ —eM|? =Y Py Y,
we need only show that C(U) =V N V5-.

By the form of U we must have C(U) C C(X) =V, so by Exercise 1,
CU)CV = V=CU)a(VncU)?h).
But by corollary (a), V = Vo @ (V NVj"). We claim that it is sufficient to show
Vet =vp. (3)
To see this, note that this would imply Vo C C(U)+ «= C(U) C V4", and
V=Voa(VnVH =Vac).

In turn, this would imply the desired equality V N V5t = C(U): the inclusion C(U) C V N Vy- is
already shown, and for any w € V N Vg, its unique representation is w = = + 2 € Vo @ C(U) for
one direct sum, and w = 0 +w € Vo @ (V N V4") for the other — as C(U) C V N V5, the two
representations are equal and w = z € C(U).

We finish by proving (3), which is equivalent to V N N(UT) = V. First, for v € Vj, there exists
B € N(A) such that v = XB. We must then have 8 = (XTX)"1XTv, so 0, = A8 = UTv, implying
v € N(UT). As v belongs to V trivially, v € VNN (UT). Conversely, for v € V NN (UT), there
exists B € R such that v = X3 and 0, = UTv. Hence 0, = AXTX)"IXTXB = AB,s0v € V. O

Exercise 3. Given the facts we showed above, derive the form of the test statistic Fyy, from (1)
in this example. How does this compare to the statistic F' derived at the end of Section 1?7

Note that UTU = AXTX)~1AT = C%E, from Section 1, which we know from lecture is a strictly
positive definite matrix. Thus

Y P,y =Y {UWwTu)"'vTYY
= YTX(XTX) AT (AXTX) A7) T AXTX) - XTY
— B AT (AXTX)"1AT) ' 4B
By Lemmas 1 and 2, plugging into (1), we find
B AT (A(XTX)"1AT) ! AB/g
Y?(I, — Px)Y/(n—d)

FV-,VO =

which is identical to the F statistic derived in Section 1.
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