General Linear and Subspace Testing (Lab 6)

BST 235: Advanced Regression and Statistical Learning Alex Levis, Fall 2019

1 Review of general linear hypothesis testing

In the linear model

$$
\mathbb{E}_P(Y | \mathbf{X}) = \mathbf{X}^T \boldsymbol{\beta}(P),
$$

assuming homoscedastic normal data (i.e., $Y - \mathbb{E}_P(Y | \mathbf{X}) | \mathbf{X} \sim \mathcal{N}(0, \sigma^2)$), one may wish to perform inference on any wild function of $\mathcal{B}(P)$, e.g., $\chi(\mathcal{B}) = \left(\sin(\beta_1), \sum_{j=1}^d \beta_j^4\right)$. In general, it is very difficult to achieve exact inference in this setting, without further restrictions on $\chi(\cdot)$.

Perhaps unsurprisingly, there is one class of functions of the regression parameters with very wellcharacterized distributions — linear functions! In particular, let $A \in \mathbb{R}^{q \times d}$, and consider

$$
\chi(\boldsymbol{\beta}) = A\boldsymbol{\beta}.
$$

Given the sample least squares estimator $\hat{\beta}$, a natural estimator of $\chi(\beta(P))$ is $\hat{\chi} = A\hat{\beta}$. We have already seen under assumptions (A') and (B), (C), (D), that $\hat{\boldsymbol{\beta}} | X \sim \mathcal{N}_d(\boldsymbol{\beta}(P), \sigma^2(X^T X)^{-1})$, so by properties of normal random vectors,

$$
\widehat{\chi} = A\widehat{\boldsymbol{\beta}} \,|\, \mathbb{X} \sim \mathcal{N}_q\left(A\boldsymbol{\beta}(P), \sigma^2 A(\mathbb{X}^T \mathbb{X})^{-1} A^T\right).
$$

Last lecture, we encountered the following problem: how should we test the null hypothesis

$$
H_0: A\boldsymbol{\beta}(P) = \mathbf{0}_q,
$$

under the typical assumptions? This is known as a *general linear hypothesis* test, since we are asking whether there is additional linear structure among the components of $\beta(P)$, encoded in the q rows of A. Assuming rank $(A) = q$, and defining $\Sigma = \sigma^2 A (\mathbb{X}^T \mathbb{X})^{-1} A^T$, we saw that Σ is strictly positive definite (i.e., invertible and positive semi-definite / "non-negative definite"). Therefore, using what we developed last lab, we could consider the rescaled random vector

$$
\Sigma^{-1/2} A \widehat{\boldsymbol{\beta}} \, | \, \mathbb{X} \sim \mathcal{N}_q(\Sigma^{-1/2} A \boldsymbol{\beta}(P), I_q) \stackrel{H_0}{\equiv} \mathcal{N}_q(\mathbf{0}_q, I_q).
$$

This is convenient as taking the squared norm of a standard multivariate normal vector, we get a (central) chi-squared distribution:

$$
\begin{split}\n\left(\Sigma^{-1/2} A \hat{\boldsymbol{\beta}}\right)^{T} \Sigma^{-1/2} A \hat{\boldsymbol{\beta}} \\
&= \hat{\boldsymbol{\beta}}^{T} A^{T} \Sigma^{-1} A \hat{\boldsymbol{\beta}} \\
&= \frac{\hat{\boldsymbol{\beta}}^{T} A^{T} \left(A (\mathbb{X}^{T} \mathbb{X})^{-1} A^{T}\right)^{-1} A \hat{\boldsymbol{\beta}}}{\sigma^{2}} \mid \mathbb{X} \stackrel{H_{0}}{\sim} \chi_{q}^{2}(0).\n\end{split}
$$

Note, however, that since σ^2 is typically unknown, we are still not quite ready to use this to construct a hypothesis test.

One obvious idea is to plug in the (unbiased) estimator $\hat{\sigma}_u^2 = \frac{1}{n-d} ||\mathbf{Y} - \mathbb{X}\hat{\boldsymbol{\beta}}||^2 = \frac{1}{n-d}\mathbf{Y}^T(I_n - \hat{P}_{\mathbb{X}})\mathbf{Y},$ and see if we can characterize the distribution of the statistic under H_0 . Recall that

$$
\frac{1}{\sigma^2} \mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y} = \frac{1}{\sigma^2} \boldsymbol{\epsilon}^T (I_n - \widehat{P}_{\mathbb{X}}) \boldsymbol{\epsilon} \, | \, \mathbb{X} \sim \chi^2_{n-d}(0),
$$

where $\epsilon = \mathbf{Y} - \mathbb{X}\beta(P)$, since $(I_n - \widehat{P}_\mathbb{X})$ is symmetric, idempotent, and has rank $n - d$ when the columns of X are linearly independent. In other words, $\frac{(n-d)\hat{\sigma}_u^2}{\sigma^2} \mid X \sim \chi^2_{n-d}(0)$. We have seen that by Fisher-Cochran, the linear function $\hat{\boldsymbol{\beta}}$ and the quadratic function $\hat{\sigma}_u^2$ are independent (conditional
on the source \mathbb{X}). Therefore on the covariates X). Therefore,

$$
F \coloneqq \frac{\hat{\beta}^T A^T (A(\mathbb{X}^T \mathbb{X})^{-1} A^T)^{-1} A \hat{\beta}/q}{\mathbf{Y}^T (I_n - \hat{P}_{\mathbb{X}}) \mathbf{Y}/(n - d)}
$$

\n
$$
= \frac{\hat{\beta}^T A^T (A(\mathbb{X}^T \mathbb{X})^{-1} A^T)^{-1} A \hat{\beta}/q}{\hat{\sigma}_u^2}
$$

\n
$$
= \left\{ \frac{1}{q} \cdot \frac{\hat{\beta}^T A^T (A(\mathbb{X}^T \mathbb{X})^{-1} A^T)^{-1} A \hat{\beta}}{\sigma^2} \right\} / \left\{ \frac{1}{n - d} \cdot \frac{(n - d)\hat{\sigma}_u^2}{\sigma^2} \right\}
$$

\n
$$
\stackrel{H_0}{\sim} \frac{\chi_q^2(0)/q}{\chi_{n - d}^2(0)/(n - d)} \equiv F_{q, n - d}(0), \text{ as the two chi-squared variables are independent.}
$$

Given this test statistic, we can construct a standard F-test, that rejects H_0 with probability α under the null hypothesis. Specifically, we should reject when $F > F_{q,n-d,1-\alpha}(0)$, where $F_{q,n-d,1-\alpha}(0)$ is the $(1 - \alpha)$ -th quantile of the central F distribution with degrees of freedom q and $n - d$.

2 An alternative perspective

 \overline{f}

The linear model, equivalently stated in terms of the n observations in our sample, is

$$
\mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\beta(P) = \sum_{j=1}^d \mathbf{X}^{(j)}\beta_j(P) \in \mathcal{C}(\mathbb{X}) \subseteq \mathbb{R}^n.
$$

As we noted above, though, the null hypothesis, H_0 : $A\beta(P) = \mathbf{0}_q$, imposes q additional linear constraints on the parameter vector $\beta(P)$. That is, under the null hypothesis, the mean of Y given X lies in a linear subspace of $C(X)$:

$$
V_0 := \left\{ \mathbb{X}\boldsymbol{\beta} \, \middle| \, \boldsymbol{\beta} \in \mathbb{R}^d, A\boldsymbol{\beta} = \mathbf{0}_q \right\} = \left\{ \mathbb{X}\boldsymbol{\beta} \, \middle| \, \boldsymbol{\beta} \in \mathcal{N}(A) \right\} \subseteq \mathcal{C}(\mathbb{X}).
$$

The null hypothesis is therefore equivalent to $H_0 : \mathbb{E}_P(Y | X) \in V_0$. This is an instance of a general subspace test setting, as we wish to know whether the (conditional) mean of the outcome lies in a particular subspace (i.e., V_0) of a larger assumed space (i.e., $\mathcal{C}(\mathbb{X})$). We study the abstract problem in the next section.

3 General subspace hypothesis testing

Consider the unconditional homoscedastic normal data setting, $\mathbf{Y} \sim \mathcal{N}_n(\mu, \sigma^2 I_n)$. Let $V_0, V \subseteq \mathbb{R}^n$ be two linear subspaces of \mathbb{R}^n such that $V_0 \subseteq V$. We will consider testing

$$
H_0: \boldsymbol{\mu} \in V_0 \text{ versus } H_1: \boldsymbol{\mu} \in V \setminus V_0.
$$

The key idea will be to compare residuals under the null hypothesis with residuals from the model with no restrictions beyond $\mu \in V$. Specifically, let

$$
e^{(0)} = \mathbf{Y} - P_{V_0}(\mathbf{Y}) = P_{V_0^{\perp}}(\mathbf{Y}), \text{ and } e^{(1)} = \mathbf{Y} - P_V(\mathbf{Y}) = P_{V^{\perp}}(\mathbf{Y}),
$$

and we will consider $\| \bm{e}^{(0)} - \bm{e}^{(1)}\|^2$ being large as evidence against H_0 . To understand the distribution of this quantity, the following exercise is crucial.

Exercise 1. Let U, W be finite-dimensional subspaces of vector space V, with $U \subseteq W$. Show that

$$
W = U \oplus (W \cap U^{\perp}).
$$

To do this, recall from the first homework that for any vector space V, $V_0 \subseteq V$ a finite-dimensional linear subspace, $V = V_0 \oplus V_0^{\perp}$. Now, replace the larger vector space V with W and the subspace V_0 with U. Be careful with the symbol \perp .

By definition, the orthogonal complement of U , considered as a linear subspace of the vector space W , is given by

$$
U^{\perp,W} = \{ w \in W \, | \, \langle w,u \rangle = 0, \forall u \in U \} = W \cap U^{\perp},
$$

where U^{\perp} is the orthogonal complement with respect to the larger vector space V. From a result from the first homework, we therefore have $W = U \oplus U^{\perp,W} = U \oplus (W \cap U^{\perp}).$

Note the following corollaries to Exercise 1, which follow from results in the first homework:

(a)
$$
V_0 \subseteq V
$$
 means $V = V_0 \oplus (V \cap V_0^{\perp})$, and $V^{\perp} \subseteq V_0^{\perp}$ means $V_0^{\perp} = V^{\perp} \oplus (V \cap V_0^{\perp})$;

(b) $P_V = P_{V_0} + P_{V \cap V_0^{\perp}}$, and $P_{V_0^{\perp}} = P_{V^{\perp}} + P_{V \cap V_0^{\perp}}$ (see also Exercise 4 of Lab 4);

(c)
$$
\dim(V) = \dim(V_0) + \dim(V \cap V_0^{\perp}) \implies \dim(V \cap V_0^{\perp}) = \dim(V) - \dim(V_0).
$$

As a consequence of corollary (b), we find

$$
\|e^{(0)} - e^{(1)}\|^2 = \|P_V(\mathbf{Y}) - P_{V_0}(\mathbf{Y})\|^2 = \|P_{V \cap V_0^{\perp}}(\mathbf{Y})\|^2 = \mathbf{Y}^T \widehat{P}_{V \cap V_0^{\perp}} \mathbf{Y}.
$$

Moreover, again by corollary (b),

$$
\mathbf{Y}^T\widehat{P}_{V\cap V_0^\perp}\mathbf{Y} = \mathbf{Y}^T\widehat{P}_{V_0^\perp}\mathbf{Y} - \mathbf{Y}^T\widehat{P}_{V^\perp}\mathbf{Y} = \|e^{(0)}\|^2 - \|e^{(1)}\|^2.
$$

Let $\epsilon = \mathbf{Y} - \boldsymbol{\mu}$, then

$$
\|\boldsymbol{e}^{(0)}-\boldsymbol{e}^{(1)}\|^2=\|P_{V\cap V_0^\perp}(\boldsymbol{\mu}+\boldsymbol{\epsilon})\|^2\stackrel{H_0}{=}\|P_{V\cap V_0^\perp}(\boldsymbol{\epsilon})\|^2=\boldsymbol{\epsilon}^T\widehat{P}_{V\cap V_0^\perp}\boldsymbol{\epsilon},
$$

since $\mu \in V_0$ under H_0 . Combining these facts, and using corollary (c), we see that

$$
\frac{\|\boldsymbol{e}^{(0)}\|^2 - \|\boldsymbol{e}^{(1)}\|^2}{\sigma^2} \stackrel{H_0}{=} \left(\frac{\epsilon}{\sigma}\right)^T \widehat{P}_{V \cap V_0^{\perp}}\left(\frac{\epsilon}{\sigma}\right) \sim \chi^2_{\text{rank}(\widehat{P}_{V \cap V_0^{\perp}})}(0) \equiv \chi^2_{\text{dim}(V) - \text{dim}(V_0)}(0).
$$

Exercise 2. In the above setting, show that the unbiased estimator of σ^2 ,

$$
\widehat{\sigma}_{u}^{2} = \frac{\|\mathbf{Y} - P_{V}(\mathbf{Y})\|^{2}}{n - \dim(V)} = \frac{\|e^{(1)}\|^{2}}{n - \dim(V)},
$$

is independent of $||e^{(0)} - e^{(1)}||^2$. Use this to justify the F-test of H_0 based on

$$
F_{V,V_0} = \frac{\left(\|e^{(0)}\|^2 - \|e^{(1)}\|^2\right)/(\dim(V) - \dim(V_0))}{\widehat{\sigma}_u^2}.
$$
\n(1)

Note that $(n - \dim(V))\hat{\sigma}_u^2 = \mathbf{Y}^T(I_n - \hat{P}_V)\mathbf{Y} = \boldsymbol{\epsilon}^T(I_n - \hat{P}_V)\boldsymbol{\epsilon}$, and $\|\boldsymbol{e}^{(0)}-\boldsymbol{e}^{(1)}\|^2=\mathbf{Y}^T\widehat{P}_{V\cap V_0^\perp}\mathbf{Y}=\|(\widehat{P}_V-\widehat{P}_{V_0})\boldsymbol{\epsilon}\|^2+2\langle\boldsymbol{\mu},(\widehat{P}_V-\widehat{P}_{V_0})\boldsymbol{\epsilon}\rangle+\|(\widehat{P}_V-\widehat{P}_{V_0})\boldsymbol{\mu}\|^2$ $=: g((\overline{P}_V - \overline{P}_{V_0})\epsilon),$

so it is sufficient by Fisher-Cochran to show $(I_n - P_V)(P_V - P_{V_0}) = \mathbf{0}_{n \times n}$. But this holds as $(I_n - \widehat{P}_V)(\widehat{P}_V - \widehat{P}_{V_0}) = \widehat{P}_V - \widehat{P}_{V_0} - \widehat{P}_V^2 + \widehat{P}_V \widehat{P}_{V_0} = \mathbf{0}_{n \times n},$

since $P_V P_{V_0} = P_{V_0}$. Therefore, the test statistic F_{V_0} above can also be written

$$
F_{V,V_0} \stackrel{H_0}{=} \frac{1}{\sigma^2} \cdot \frac{\boldsymbol{\epsilon}^T (\widehat{P}_V - \widehat{P}_{V_0}) \boldsymbol{\epsilon}}{\dim(V) - \dim(V_0)} / \left\{ \frac{1}{\sigma^2} \cdot \frac{\boldsymbol{\epsilon}^T (I_n - \widehat{P}_V) \boldsymbol{\epsilon}}{n - \dim(V)} \right\} \sim F_{\dim(V) - \dim(V_0), n - \dim(V)}(0).
$$

4 Return to linear models

As argued in Section 2 above, the general linear hypothesis test can be stated as a general subspace hypothesis of

$$
H_0: \mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) \in V_0 \text{ versus } H_1: \mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) \in V \setminus V_0,
$$
\n
$$
(2)
$$

where $V_0 = \{ \mathbb{X}\boldsymbol{\beta} \mid \boldsymbol{\beta} \in \mathcal{N}(A) \} \subseteq V \subseteq \mathbb{R}^n$, and $V = \mathcal{C}(\mathbb{X})$.

Lemma 1. Assuming X has full column rank, $dim(V_0) = d - q$ and $dim(V) = d$.

Proof. That $\dim(V) = \dim(\mathcal{C}(\mathbb{X})) = d$ is an assumption of the lemma, so we need only show the other equality. By rank-nullity, we know

$$
d = \text{rank}(A) + \dim(\mathcal{N}(A)) \implies \dim(\mathcal{N}(A)) = d - q,
$$

since we have assumed rank $(A) = q$. Let $\mathbf{b}_1, \ldots, \mathbf{b}_{d-q} \in \mathbb{R}^d$ be a basis for $\mathcal{N}(A)$. It suffices to show that $\mathbb{X}\mathbf{b}_1, \ldots, \mathbb{X}\mathbf{b}_{d-q}$ is a basis for V_0 . Clearly these vectors span V_0 , since $\mathbf{b}_1, \ldots, \mathbf{b}_{d-q}$ spans $\mathcal{N}(A)$. It remains to establish linear independence. To that end, let $\alpha_1, \ldots, \alpha_{d-q} \in \mathbb{R}$ satisfy

$$
\mathbf{0}_n = \sum_{j=1}^{d-q} \alpha_j \mathbb{X} \mathbf{b}_j = \mathbb{X} \left(\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j \right).
$$

Then we know $\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j \in \mathcal{N}(\mathbb{X})$, but by rank-nullity

$$
\dim(\mathcal{N}(\mathbb{X})) = d - \text{rank}(\mathbb{X}) = d - d = 0.
$$

This implies that $\mathcal{N}(\mathbb{X}) = \{\mathbf{0}_d\},\$ so

$$
\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j = \mathbf{0}_d \implies \alpha_1 = \cdots = \alpha_{d-q} = 0,
$$

since $\mathbf{b}_1, \ldots, \mathbf{b}_{d-q}$ are linearly independent. Thus, $\mathbb{X}\mathbf{b}_1, \ldots, \mathbb{X}\mathbf{b}_{d-q}$ are linearly independent, as claimed. \Box In order to derive the test statistic F_{V,V_0} in this setting, it remains to find more explicit forms for $\|\boldsymbol{e}^{(0)} - \boldsymbol{e}^{(1)}\|^2$ and $\|\boldsymbol{e}^{(1)}\|^2$. The latter term is easy, since

$$
\|\mathbf{e}^{(1)}\|^2 = \|P_{V^{\perp}}(\mathbf{Y})\|^2 = \|P_{\mathcal{C}(\mathbb{X})^{\perp}}(\mathbf{Y})\|^2 = \mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y} = (n-d)\widehat{\sigma}_u^2.
$$

Lemma 2. When $\text{rank}(\mathbb{X}) = d$, $\text{rank}(A) = q$, $\|\mathbf{e}^{(0)} - \mathbf{e}^{(1)}\|^2 = \mathbf{Y}^T \widehat{P}_U \mathbf{Y}$, where $U = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} A^T$, and \widehat{P}_U is the matrix corresponding to projection onto $\mathcal{C}(U)$.

Proof. (Caution: tricky proof!) Since

$$
\|\mathbf{e}^{(0)}-\mathbf{e}^{(1)}\|^2=\mathbf{Y}^T\widehat{P}_{V\cap V_0^{\perp}}\mathbf{Y},
$$

we need only show that $\mathcal{C}(U) = V \cap V_0^{\perp}$.

By the form of U we must have $\mathcal{C}(U) \subseteq \mathcal{C}(\mathbb{X}) = V$, so by Exercise 1,

$$
\mathcal{C}(U) \subseteq V \implies V = \mathcal{C}(U) \oplus (V \cap \mathcal{C}(U)^{\perp}).
$$

But by corollary (a), $V = V_0 \oplus (V \cap V_0^{\perp})$. We claim that it is sufficient to show

$$
V \cap \mathcal{C}(U)^{\perp} = V_0. \tag{3}
$$

To see this, note that this would imply $V_0 \subseteq \mathcal{C}(U)^{\perp} \iff \mathcal{C}(U) \subseteq V_0^{\perp}$, and

$$
V = V_0 \oplus (V \cap V_0^{\perp}) = V_0 \oplus \mathcal{C}(U).
$$

In turn, this would imply the desired equality $V \cap V_0^{\perp} = \mathcal{C}(U)$: the inclusion $\mathcal{C}(U) \subseteq V \cap V_0^{\perp}$ is already shown, and for any $w \in V \cap V_0^{\perp}$, its unique representation is $w = x + z \in V_0 \oplus \mathcal{C}(U)$ for one direct sum, and $w = 0 + w \in V_0 \oplus (V \cap V_0^{\perp})$ for the other $-\text{ as } \mathcal{C}(U) \subseteq V \cap V_0^{\perp}$, the two representations are equal and $w = z \in \mathcal{C}(U)$.

We finish by proving [\(3\)](#page-4-0), which is equivalent to $V \cap \mathcal{N}(U^T) = V_0$. First, for $v \in V_0$, there exists $\beta \in \mathcal{N}(A)$ such that $v = \mathbb{X}\beta$. We must then have $\beta = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T v$, so $\mathbf{0}_q = A\beta = U^T v$, implying $v \in \mathcal{N}(U^T)$. As v belongs to V trivially, $v \in V \cap \mathcal{N}(U^T)$. Conversely, for $v \in V \cap \mathcal{N}(U^T)$, there exists $\beta \in \mathbb{R}^d$ such that $v = \mathbb{X}\beta$ and $\mathbf{0}_q = U^T v$. Hence $\mathbf{0}_q = A(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X}\beta = A\beta$, so $v \in V_0$.

Exercise 3. Given the facts we showed above, derive the form of the test statistic F_{V,V_0} from [\(1\)](#page-3-0) in this example. How does this compare to the statistic F derived at the end of Section 1?

Note that $U^T U = A(\mathbb{X}^T \mathbb{X})^{-1} A^T = \frac{1}{\sigma^2} \Sigma$, from Section 1, which we know from lecture is a strictly positive definite matrix. Thus

$$
\mathbf{Y}^T \hat{P}_U \mathbf{Y} = \mathbf{Y}^T \{ U (U^T U)^{-1} U^T \} \mathbf{Y}
$$

=
$$
\mathbf{Y}^T \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} A^T \left(A (\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}
$$

=
$$
\hat{\boldsymbol{\beta}}^T A^T \left(A (\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \hat{\boldsymbol{\beta}}
$$

By Lemmas 1 and 2, plugging into [\(1\)](#page-3-0), we find

$$
F_{V,V_0} = \frac{\widehat{\boldsymbol{\beta}}^T A^T \left(A(\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \widehat{\boldsymbol{\beta}} / q}{\mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y} / (n - d)},
$$

which is identical to the F statistic derived in Section 1.