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1 Review of general linear hypothesis testing

In the linear model
EP (Y |X) = XTβ(P ),

assuming homoscedastic normal data (i.e., Y −EP (Y |X) |X ∼ N (0, σ2)), one may wish to perform

inference on any wild function of β(P ), e.g., χ(β) =
(

sin(β1),
∑d

j=1 β
4
j

)
. In general, it is very

difficult to achieve exact inference in this setting, without further restrictions on χ( · ).

Perhaps unsurprisingly, there is one class of functions of the regression parameters with very well-
characterized distributions — linear functions! In particular, let A ∈ Rq×d, and consider

χ(β) = Aβ.

Given the sample least squares estimator β̂, a natural estimator of χ(β(P )) is χ̂ = Aβ̂. We have
already seen under assumptions (A’) and (B), (C), (D), that β̂ |X ∼ Nd(β(P ), σ2(XTX)−1), so by
properties of normal random vectors,

χ̂ = Aβ̂ |X ∼ Nq
(
Aβ(P ), σ2A(XTX)−1AT

)
.

Last lecture, we encountered the following problem: how should we test the null hypothesis

H0 : Aβ(P ) = 0q,

under the typical assumptions? This is known as a general linear hypothesis test, since we are
asking whether there is additional linear structure among the components of β(P ), encoded in the
q rows of A. Assuming rank(A) = q, and defining Σ = σ2A(XTX)−1AT , we saw that Σ is strictly
positive definite (i.e., invertible and positive semi-definite / “non-negative definite”). Therefore,
using what we developed last lab, we could consider the rescaled random vector

Σ−1/2Aβ̂ |X ∼ Nq(Σ−1/2Aβ(P ), Iq)
H0≡ Nq(0q, Iq).

This is convenient as taking the squared norm of a standard multivariate normal vector, we get a
(central) chi-squared distribution:(

Σ−1/2Aβ̂
)T

Σ−1/2Aβ̂

= β̂
T
ATΣ−1Aβ̂

=
β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂

σ2
|X H0∼ χ2

q(0).

Note, however, that since σ2 is typically unknown, we are still not quite ready to use this to
construct a hypothesis test.



One obvious idea is to plug in the (unbiased) estimator σ̂2u = 1
n−d‖Y−Xβ̂‖2 = 1

n−dY
T (In− P̂X)Y,

and see if we can characterize the distribution of the statistic under H0. Recall that

1

σ2
YT (In − P̂X)Y =

1

σ2
εT (In − P̂X)ε |X ∼ χ2

n−d(0),

where ε = Y − Xβ(P ), since (In − P̂X) is symmetric, idempotent, and has rank n − d when the

columns of X are linearly independent. In other words, (n−d)σ̂2
u

σ2 |X ∼ χ2
n−d(0). We have seen that by

Fisher-Cochran, the linear function β̂ and the quadratic function σ̂2u are independent (conditional
on the covariates X). Therefore,

F :=
β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂/q

YT (In − P̂X)Y/(n− d)

=
β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂/q

σ̂2u

=

1

q
·
β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂

σ2


/{

1

n− d
· (n− d)σ̂2u

σ2

}
H0∼

χ2
q(0)/q

χ2
n−d(0)/(n− d)

≡ Fq,n−d(0), as the two chi-squared variables are independent.

Given this test statistic, we can construct a standard F -test, that rejects H0 with probability α un-
der the null hypothesis. Specifically, we should reject when F > Fq,n−d,1−α(0), where Fq,n−d,1−α(0)
is the (1− α)-th quantile of the central F distribution with degrees of freedom q and n− d.

2 An alternative perspective

The linear model, equivalently stated in terms of the n observations in our sample, is

EP (Y |X) = Xβ(P ) =
d∑
j=1

X(j)βj(P ) ∈ C(X) ⊆ Rn.

As we noted above, though, the null hypothesis, H0 : Aβ(P ) = 0q, imposes q additional linear
constraints on the parameter vector β(P ). That is, under the null hypothesis, the mean of Y given
X lies in a linear subspace of C(X):

V0 :=
{
Xβ
∣∣∣β ∈ Rd, Aβ = 0q

}
= {Xβ |β ∈ N (A)} ⊆ C(X).

The null hypothesis is therefore equivalent to H0 : EP (Y |X) ∈ V0. This is an instance of a general
subspace test setting, as we wish to know whether the (conditional) mean of the outcome lies in a
particular subspace (i.e., V0) of a larger assumed space (i.e., C(X)). We study the abstract problem
in the next section.
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3 General subspace hypothesis testing

Consider the unconditional homoscedastic normal data setting, Y ∼ Nn(µ, σ2In). Let V0, V ⊆ Rn
be two linear subspaces of Rn such that V0 ⊆ V . We will consider testing

H0 : µ ∈ V0 versus H1 : µ ∈ V \ V0.

The key idea will be to compare residuals under the null hypothesis with residuals from the model
with no restrictions beyond µ ∈ V . Specifically, let

e(0) = Y − PV0(Y) = PV ⊥
0

(Y), and e(1) = Y − PV (Y) = PV ⊥(Y),

and we will consider ‖e(0)−e(1)‖2 being large as evidence againstH0. To understand the distribution
of this quantity, the following exercise is crucial.

Exercise 1. Let U , W be finite-dimensional subspaces of vector space V , with U ⊆W . Show that

W = U ⊕ (W ∩ U⊥).

To do this, recall from the first homework that for any vector space V , V0 ⊆ V a finite-dimensional
linear subspace, V = V0 ⊕ V ⊥0 . Now, replace the larger vector space V with W and the subspace
V0 with U . Be careful with the symbol ⊥.

By definition, the orthogonal complement of U , considered as a linear subspace of the vector space
W , is given by

U⊥,W = {w ∈W | 〈w, u〉 = 0, ∀u ∈ U} = W ∩ U⊥,
where U⊥ is the orthogonal complement with respect to the larger vector space V . From a result
from the first homework, we therefore have W = U ⊕ U⊥,W = U ⊕ (W ∩ U⊥).

Note the following corollaries to Exercise 1, which follow from results in the first homework:

(a) V0 ⊆ V means V = V0 ⊕ (V ∩ V ⊥0 ), and V ⊥ ⊆ V ⊥0 means V ⊥0 = V ⊥ ⊕ (V ∩ V ⊥0 );

(b) PV = PV0 + PV ∩V ⊥
0

, and PV ⊥
0

= PV ⊥ + PV ∩V ⊥
0

(see also Exercise 4 of Lab 4);

(c) dim(V ) = dim(V0) + dim(V ∩ V ⊥0 ) =⇒ dim(V ∩ V ⊥0 ) = dim(V )− dim(V0).

As a consequence of corollary (b), we find

‖e(0) − e(1)‖2 = ‖PV (Y)− PV0(Y)‖2 = ‖PV ∩V ⊥
0

(Y)‖2 = YT P̂V ∩V ⊥
0
Y.

Moreover, again by corollary (b),

YT P̂V ∩V ⊥
0
Y = YT P̂V ⊥

0
Y −YT P̂V ⊥Y = ‖e(0)‖2 − ‖e(1)‖2.

Let ε = Y − µ, then

‖e(0) − e(1)‖2 = ‖PV ∩V ⊥
0

(µ+ ε)‖2 H0= ‖PV ∩V ⊥
0

(ε)‖2 = εT P̂V ∩V ⊥
0
ε,

since µ ∈ V0 under H0. Combining these facts, and using corollary (c), we see that

‖e(0)‖2 − ‖e(1)‖2

σ2
H0=
( ε
σ

)T
P̂V ∩V ⊥

0

( ε
σ

)
∼ χ2

rank(P̂
V ∩V ⊥

0
)
(0) ≡ χ2

dim(V )−dim(V0)
(0).
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Exercise 2. In the above setting, show that the unbiased estimator of σ2,

σ̂2u =
‖Y − PV (Y)‖2

n− dim(V )
=

‖e(1)‖2

n− dim(V )
,

is independent of ‖e(0) − e(1)‖2. Use this to justify the F -test of H0 based on

FV,V0 =

(
‖e(0)‖2 − ‖e(1)‖2

)
/(dim(V )− dim(V0))

σ̂2u
. (1)

Note that (n− dim(V ))σ̂2u = YT (In − P̂V )Y = εT (In − P̂V )ε, and

‖e(0) − e(1)‖2 = YT P̂V ∩V ⊥
0
Y = ‖(P̂V − P̂V0)ε‖2 + 2〈µ, (P̂V − P̂V0)ε〉+ ‖(P̂V − P̂V0)µ‖2

=: g((P̂V − P̂V0)ε),

so it is sufficient by Fisher-Cochran to show (In − P̂V )(P̂V − P̂V0) = 0n×n. But this holds as

(In − P̂V )(P̂V − P̂V0) = P̂V − P̂V0 − P̂ 2
V + P̂V P̂V0 = 0n×n,

since P̂V P̂V0 = P̂V0 . Therefore, the test statistic FV,V0 above can also be written

FV,V0
H0=

1

σ2
· εT (P̂V − P̂V0)ε

dim(V )− dim(V0)

/{
1

σ2
· ε

T (In − P̂V )ε

n− dim(V )

}
∼ Fdim(V )−dim(V0),n−dim(V )(0).

4 Return to linear models

As argued in Section 2 above, the general linear hypothesis test can be stated as a general subspace
hypothesis of

H0 : EP (Y |X) ∈ V0 versus H1 : EP (Y |X) ∈ V \ V0, (2)

where V0 = {Xβ |β ∈ N (A)} ⊆ V ⊆ Rn, and V = C(X).

Lemma 1. Assuming X has full column rank, dim(V0) = d− q and dim(V ) = d.

Proof. That dim(V ) = dim(C(X)) = d is an assumption of the lemma, so we need only show the
other equality. By rank-nullity, we know

d = rank(A) + dim(N (A)) =⇒ dim(N (A)) = d− q,

since we have assumed rank(A) = q. Let b1, . . . ,bd−q ∈ Rd be a basis for N (A). It suffices to
show that Xb1, . . . ,Xbd−q is a basis for V0. Clearly these vectors span V0, since b1, . . . ,bd−q spans
N (A). It remains to establish linear independence. To that end, let α1, . . . , αd−q ∈ R satisfy

0n =

d−q∑
j=1

αjXbj = X

d−q∑
j=1

αjbj

 .

Then we know
∑d−q

j=1 αjbj ∈ N (X), but by rank-nullity

dim(N (X)) = d− rank(X) = d− d = 0.

This implies that N (X) = {0d}, so

d−q∑
j=1

αjbj = 0d =⇒ α1 = · · · = αd−q = 0,

since b1, . . . ,bd−q are linearly independent. Thus, Xb1, . . . ,Xbd−q are linearly independent, as
claimed.
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In order to derive the test statistic FV,V0 in this setting, it remains to find more explicit forms for
‖e(0) − e(1)‖2 and ‖e(1)‖2. The latter term is easy, since

‖e(1)‖2 = ‖PV ⊥(Y)‖2 = ‖PC(X)⊥(Y)‖2 = YT (In − P̂X)Y = (n− d)σ̂2u.

Lemma 2. When rank(X) = d, rank(A) = q, ‖e(0) − e(1)‖2 = YT P̂UY, where U = X(XTX)−1AT ,
and P̂U is the matrix corresponding to projection onto C(U).

Proof. (Caution: tricky proof!) Since

‖e(0) − e(1)‖2 = YT P̂V ∩V ⊥
0
Y,

we need only show that C(U) = V ∩ V ⊥0 .

By the form of U we must have C(U) ⊆ C(X) = V , so by Exercise 1,

C(U) ⊆ V =⇒ V = C(U)⊕ (V ∩ C(U)⊥).

But by corollary (a), V = V0 ⊕ (V ∩ V ⊥0 ). We claim that it is sufficient to show

V ∩ C(U)⊥ = V0. (3)

To see this, note that this would imply V0 ⊆ C(U)⊥ ⇐⇒ C(U) ⊆ V ⊥0 , and

V = V0 ⊕ (V ∩ V ⊥0 ) = V0 ⊕ C(U).

In turn, this would imply the desired equality V ∩ V ⊥0 = C(U): the inclusion C(U) ⊆ V ∩ V ⊥0 is
already shown, and for any w ∈ V ∩ V ⊥0 , its unique representation is w = x + z ∈ V0 ⊕ C(U) for
one direct sum, and w = 0 + w ∈ V0 ⊕ (V ∩ V ⊥0 ) for the other — as C(U) ⊆ V ∩ V ⊥0 , the two
representations are equal and w = z ∈ C(U).

We finish by proving (3), which is equivalent to V ∩ N (UT ) = V0. First, for v ∈ V0, there exists
β ∈ N (A) such that v = Xβ. We must then have β = (XTX)−1XT v, so 0q = Aβ = UT v, implying
v ∈ N (UT ). As v belongs to V trivially, v ∈ V ∩ N (UT ). Conversely, for v ∈ V ∩ N (UT ), there
exists β ∈ Rd such that v = Xβ and 0q = UT v. Hence 0q = A(XTX)−1XTXβ = Aβ, so v ∈ V0.

Exercise 3. Given the facts we showed above, derive the form of the test statistic FV,V0 from (1)
in this example. How does this compare to the statistic F derived at the end of Section 1?

Note that UTU = A(XTX)−1AT = 1
σ2 Σ, from Section 1, which we know from lecture is a strictly

positive definite matrix. Thus

YT P̂UY = YT {U(UTU)−1UT }Y

= YTX(XTX)−1AT
(
A(XTX)−1AT

)−1
A(XTX)−1XTY

= β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂

By Lemmas 1 and 2, plugging into (1), we find

FV,V0 =
β̂
T
AT
(
A(XTX)−1AT

)−1
Aβ̂/q

YT (In − P̂X)Y/(n− d)
,

which is identical to the F statistic derived in Section 1.
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