General Linear and Subspace Testing (Lab 6)

BST 235: Advanced Regression and Statistical Learning Alex Levis, Fall 2019

1 Review of general linear hypothesis testing

In the linear model

$$\mathbb{E}_P(Y \mid \mathbf{X}) = \mathbf{X}^T \boldsymbol{\beta}(P),$$

assuming homoscedastic normal data (i.e., $Y - \mathbb{E}_P(Y \mid \mathbf{X}) \mid \mathbf{X} \sim \mathcal{N}(0, \sigma^2)$), one may wish to perform inference on any wild function of $\boldsymbol{\beta}(P)$, e.g., $\boldsymbol{\chi}(\boldsymbol{\beta}) = \left(\sin(\beta_1), \sum_{j=1}^d \beta_j^4\right)$. In general, it is very difficult to achieve *exact* inference in this setting, without further restrictions on $\boldsymbol{\chi}(\cdot)$.

Perhaps unsurprisingly, there is one class of functions of the regression parameters with very well-characterized distributions — linear functions! In particular, let $A \in \mathbb{R}^{q \times d}$, and consider

$$\chi(\beta) = A\beta.$$

Given the sample least squares estimator $\widehat{\boldsymbol{\beta}}$, a natural estimator of $\chi(\boldsymbol{\beta}(P))$ is $\widehat{\boldsymbol{\chi}} = A\widehat{\boldsymbol{\beta}}$. We have already seen under assumptions (A') and (B), (C), (D), that $\widehat{\boldsymbol{\beta}} \mid \mathbb{X} \sim \mathcal{N}_d(\boldsymbol{\beta}(P), \sigma^2(\mathbb{X}^T\mathbb{X})^{-1})$, so by properties of normal random vectors,

$$\widehat{\chi} = A\widehat{\beta} \mid \mathbb{X} \sim \mathcal{N}_q \left(A\beta(P), \sigma^2 A(\mathbb{X}^T \mathbb{X})^{-1} A^T \right).$$

Last lecture, we encountered the following problem: how should we test the null hypothesis

$$H_0: A\beta(P) = \mathbf{0}_a,$$

under the typical assumptions? This is known as a general linear hypothesis test, since we are asking whether there is additional linear structure among the components of $\beta(P)$, encoded in the q rows of A. Assuming $\operatorname{rank}(A) = q$, and defining $\Sigma = \sigma^2 A(\mathbb{X}^T\mathbb{X})^{-1}A^T$, we saw that Σ is strictly positive definite (i.e., invertible and positive semi-definite / "non-negative definite"). Therefore, using what we developed last lab, we could consider the rescaled random vector

$$\Sigma^{-1/2} A \widehat{\boldsymbol{\beta}} \mid \mathbb{X} \sim \mathcal{N}_q(\Sigma^{-1/2} A \boldsymbol{\beta}(P), I_q) \stackrel{H_0}{\equiv} \mathcal{N}_q(\mathbf{0}_q, I_q).$$

This is convenient as taking the squared norm of a standard multivariate normal vector, we get a (central) chi-squared distribution:

$$\begin{split} & \left(\Sigma^{-1/2} A \widehat{\boldsymbol{\beta}} \right)^T \Sigma^{-1/2} A \widehat{\boldsymbol{\beta}} \\ &= \widehat{\boldsymbol{\beta}}^T A^T \Sigma^{-1} A \widehat{\boldsymbol{\beta}} \\ &= \frac{\widehat{\boldsymbol{\beta}}^T A^T \left(A (\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \widehat{\boldsymbol{\beta}}}{\sigma^2} \, | \, \mathbb{X} \stackrel{H_0}{\sim} \chi_q^2(0). \end{split}$$

Note, however, that since σ^2 is typically unknown, we are still not quite ready to use this to construct a hypothesis test.

One obvious idea is to plug in the (unbiased) estimator $\widehat{\sigma}_u^2 = \frac{1}{n-d} \|\mathbf{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}\|^2 = \frac{1}{n-d} \mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y}$, and see if we can characterize the distribution of the statistic under H_0 . Recall that

$$\frac{1}{\sigma^2} \mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y} = \frac{1}{\sigma^2} \epsilon^T (I_n - \widehat{P}_{\mathbb{X}}) \epsilon \mid \mathbb{X} \sim \chi_{n-d}^2(0),$$

where $\boldsymbol{\epsilon} = \mathbf{Y} - \mathbb{X}\boldsymbol{\beta}(P)$, since $(I_n - \widehat{P}_{\mathbb{X}})$ is symmetric, idempotent, and has rank n - d when the columns of \mathbb{X} are linearly independent. In other words, $\frac{(n-d)\widehat{\sigma}_u^2}{\sigma^2} \mid \mathbb{X} \sim \chi_{n-d}^2(0)$. We have seen that by Fisher-Cochran, the linear function $\widehat{\boldsymbol{\beta}}$ and the quadratic function $\widehat{\sigma}_u^2$ are independent (conditional on the covariates \mathbb{X}). Therefore,

$$F := \frac{\widehat{\boldsymbol{\beta}}^T A^T \left(A(\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \widehat{\boldsymbol{\beta}} / q}{\mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}}) \mathbf{Y} / (n - d)}$$

$$= \frac{\widehat{\boldsymbol{\beta}}^T A^T \left(A(\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \widehat{\boldsymbol{\beta}} / q}{\widehat{\sigma}_u^2}$$

$$= \left\{ \frac{1}{q} \cdot \frac{\widehat{\boldsymbol{\beta}}^T A^T \left(A(\mathbb{X}^T \mathbb{X})^{-1} A^T \right)^{-1} A \widehat{\boldsymbol{\beta}}}{\sigma^2} \right\} / \left\{ \frac{1}{n - d} \cdot \frac{(n - d)\widehat{\sigma}_u^2}{\sigma^2} \right\}$$

$$\stackrel{H_0}{\sim} \frac{\chi_q^2(0) / q}{\chi_{n - d}^2(0) / (n - d)} \equiv F_{q, n - d}(0), \text{ as the two chi-squared variables are independent.}$$

Given this test statistic, we can construct a standard F-test, that rejects H_0 with probability α under the null hypothesis. Specifically, we should reject when $F > F_{q,n-d,1-\alpha}(0)$, where $F_{q,n-d,1-\alpha}(0)$ is the $(1-\alpha)$ -th quantile of the central F distribution with degrees of freedom q and n-d.

2 An alternative perspective

The linear model, equivalently stated in terms of the n observations in our sample, is

$$\mathbb{E}_{P}(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}(P) = \sum_{j=1}^{d} \mathbf{X}^{(j)} \beta_{j}(P) \in \mathcal{C}(\mathbb{X}) \subseteq \mathbb{R}^{n}.$$

As we noted above, though, the null hypothesis, $H_0: A\beta(P) = \mathbf{0}_q$, imposes q additional linear constraints on the parameter vector $\beta(P)$. That is, under the null hypothesis, the mean of \mathbf{Y} given \mathbb{X} lies in a linear subspace of $\mathcal{C}(\mathbb{X})$:

$$V_0 \coloneqq \left\{ \mathbb{X} oldsymbol{eta} \, \middle| \, oldsymbol{eta} \in \mathbb{R}^d, A oldsymbol{eta} = \mathbf{0}_q
ight\} = \left\{ \mathbb{X} oldsymbol{eta} \, \middle| \, oldsymbol{eta} \in \mathcal{N}(A)
ight\} \subseteq \mathcal{C}(\mathbb{X}).$$

The null hypothesis is therefore equivalent to $H_0: \mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) \in V_0$. This is an instance of a general subspace test setting, as we wish to know whether the (conditional) mean of the outcome lies in a particular subspace (i.e., V_0) of a larger assumed space (i.e., $\mathcal{C}(\mathbb{X})$). We study the abstract problem in the next section.

3 General subspace hypothesis testing

Consider the unconditional homoscedastic normal data setting, $\mathbf{Y} \sim \mathcal{N}_n(\boldsymbol{\mu}, \sigma^2 I_n)$. Let $V_0, V \subseteq \mathbb{R}^n$ be two linear subspaces of \mathbb{R}^n such that $V_0 \subseteq V$. We will consider testing

$$H_0: \boldsymbol{\mu} \in V_0$$
 versus $H_1: \boldsymbol{\mu} \in V \setminus V_0$.

The key idea will be to compare residuals under the null hypothesis with residuals from the model with no restrictions beyond $\mu \in V$. Specifically, let

$$e^{(0)} = \mathbf{Y} - P_{V_0}(\mathbf{Y}) = P_{V_0^{\perp}}(\mathbf{Y}), \text{ and } e^{(1)} = \mathbf{Y} - P_{V}(\mathbf{Y}) = P_{V^{\perp}}(\mathbf{Y}),$$

and we will consider $\|e^{(0)}-e^{(1)}\|^2$ being large as evidence against H_0 . To understand the distribution of this quantity, the following exercise is crucial.

Exercise 1. Let U, W be finite-dimensional subspaces of vector space V, with $U \subseteq W$. Show that

$$W = U \oplus (W \cap U^{\perp}).$$

To do this, recall from the first homework that for any vector space $V, V_0 \subseteq V$ a finite-dimensional linear subspace, $V = V_0 \oplus V_0^{\perp}$. Now, replace the larger vector space V with W and the subspace V_0 with U. Be careful with the symbol \perp .

Note the following corollaries to Exercise 1, which follow from results in the first homework:

- (a) $V_0 \subseteq V$ means $V = V_0 \oplus (V \cap V_0^{\perp})$, and $V^{\perp} \subseteq V_0^{\perp}$ means $V_0^{\perp} = V^{\perp} \oplus (V \cap V_0^{\perp})$;
- (b) $P_V = P_{V_0} + P_{V \cap V_0^{\perp}}$, and $P_{V_0^{\perp}} = P_{V^{\perp}} + P_{V \cap V_0^{\perp}}$ (see also Exercise 4 of Lab 4);
- (c) $\dim(V) = \dim(V_0) + \dim(V \cap V_0^{\perp}) \implies \dim(V \cap V_0^{\perp}) = \dim(V) \dim(V_0).$

As a consequence of corollary (b), we find

$$\|e^{(0)} - e^{(1)}\|^2 = \|P_V(\mathbf{Y}) - P_{V_0}(\mathbf{Y})\|^2 = \|P_{V \cap V_0^{\perp}}(\mathbf{Y})\|^2 = \mathbf{Y}^T \widehat{P}_{V \cap V_0^{\perp}} \mathbf{Y}.$$

Moreover, again by corollary (b),

$$\mathbf{Y}^T \widehat{P}_{V \cap V_0^{\perp}} \mathbf{Y} = \mathbf{Y}^T \widehat{P}_{V_0^{\perp}} \mathbf{Y} - \mathbf{Y}^T \widehat{P}_{V^{\perp}} \mathbf{Y} = \|\boldsymbol{e}^{(0)}\|^2 - \|\boldsymbol{e}^{(1)}\|^2.$$

Let $\epsilon = \mathbf{Y} - \boldsymbol{\mu}$, then

$$\| \boldsymbol{e}^{(0)} - \boldsymbol{e}^{(1)} \|^2 = \| P_{V \cap V_0^{\perp}}(\boldsymbol{\mu} + \boldsymbol{\epsilon}) \|^2 \stackrel{H_0}{=} \| P_{V \cap V_0^{\perp}}(\boldsymbol{\epsilon}) \|^2 = \boldsymbol{\epsilon}^T \widehat{P}_{V \cap V_0^{\perp}} \boldsymbol{\epsilon},$$

since $\mu \in V_0$ under H_0 . Combining these facts, and using corollary (c), we see that

$$\frac{\|\boldsymbol{e}^{(0)}\|^2 - \|\boldsymbol{e}^{(1)}\|^2}{\sigma^2} \stackrel{H_0}{=} \left(\frac{\boldsymbol{\epsilon}}{\sigma}\right)^T \widehat{P}_{V \cap V_0^{\perp}}\left(\frac{\boldsymbol{\epsilon}}{\sigma}\right) \sim \chi^2_{\operatorname{rank}(\widehat{P}_{V \cap V_0^{\perp}})}(0) \equiv \chi^2_{\dim(V) - \dim(V_0)}(0).$$

Exercise 2. In the above setting, show that the unbiased estimator of σ^2 ,

$$\widehat{\sigma}_u^2 = \frac{\|\mathbf{Y} - P_V(\mathbf{Y})\|^2}{n - \dim(V)} = \frac{\|e^{(1)}\|^2}{n - \dim(V)},$$

is independent of $\|e^{(0)} - e^{(1)}\|^2$. Use this to justify the F-test of H_0 based on

$$F_{V,V_0} = \frac{\left(\|\boldsymbol{e}^{(0)}\|^2 - \|\boldsymbol{e}^{(1)}\|^2\right) / (\dim(V) - \dim(V_0))}{\widehat{\sigma}_u^2}.$$
 (1)

4 Return to linear models

As argued in Section 2 above, the general linear hypothesis test can be stated as a general subspace hypothesis of

$$H_0: \mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) \in V_0 \text{ versus } H_1: \mathbb{E}_P(\mathbf{Y} \mid \mathbb{X}) \in V \setminus V_0,$$
 (2)

where $V_0 = \{ \mathbb{X} \boldsymbol{\beta} \mid \boldsymbol{\beta} \in \mathcal{N}(A) \} \subseteq V \subseteq \mathbb{R}^n$, and $V = \mathcal{C}(\mathbb{X})$.

Lemma 1. Assuming X has full column rank, $\dim(V_0) = d - q$ and $\dim(V) = d$.

Proof. That $\dim(V) = \dim(\mathcal{C}(\mathbb{X})) = d$ is an assumption of the lemma, so we need only show the other equality. By rank-nullity, we know

$$d = \operatorname{rank}(A) + \dim(\mathcal{N}(A)) \implies \dim(\mathcal{N}(A)) = d - q$$

since we have assumed rank(A) = q. Let $\mathbf{b}_1, \ldots, \mathbf{b}_{d-q} \in \mathbb{R}^d$ be a basis for $\mathcal{N}(A)$. It suffices to show that $\mathbb{X}\mathbf{b}_1, \ldots, \mathbb{X}\mathbf{b}_{d-q}$ is a basis for V_0 . Clearly these vectors span V_0 , since $\mathbf{b}_1, \ldots, \mathbf{b}_{d-q}$ spans $\mathcal{N}(A)$. It remains to establish linear independence. To that end, let $\alpha_1, \ldots, \alpha_{d-q} \in \mathbb{R}$ satisfy

$$\mathbf{0}_n = \sum_{j=1}^{d-q} \alpha_j \mathbb{X} \mathbf{b}_j = \mathbb{X} \left(\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j \right).$$

Then we know $\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j \in \mathcal{N}(\mathbb{X})$, but by rank-nullity

$$\dim(\mathcal{N}(\mathbb{X})) = d - \operatorname{rank}(\mathbb{X}) = d - d = 0.$$

This implies that $\mathcal{N}(\mathbb{X}) = \{\mathbf{0}_d\}$, so

$$\sum_{j=1}^{d-q} \alpha_j \mathbf{b}_j = \mathbf{0}_d \implies \alpha_1 = \dots = \alpha_{d-q} = 0,$$

since $\mathbf{b}_1, \dots, \mathbf{b}_{d-q}$ are linearly independent. Thus, $\mathbb{X}\mathbf{b}_1, \dots, \mathbb{X}\mathbf{b}_{d-q}$ are linearly independent, as claimed.

In order to derive the test statistic F_{V,V_0} in this setting, it remains to find more explicit forms for $\|e^{(0)} - e^{(1)}\|^2$ and $\|e^{(1)}\|^2$. The latter term is easy, since

$$\|e^{(1)}\|^2 = \|P_{V^{\perp}}(\mathbf{Y})\|^2 = \|P_{\mathcal{C}(\mathbb{X})^{\perp}}(\mathbf{Y})\|^2 = \mathbf{Y}^T (I_n - \widehat{P}_{\mathbb{X}})\mathbf{Y} = (n - d)\widehat{\sigma}_u^2.$$

Lemma 2. When rank(\mathbb{X}) = d, rank(A) = q, $\|\mathbf{e}^{(0)} - \mathbf{e}^{(1)}\|^2 = \mathbf{Y}^T \hat{P}_U \mathbf{Y}$, where $U = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} A^T$, and \hat{P}_U is the matrix corresponding to projection onto $\mathcal{C}(U)$.

Proof. (Caution: tricky proof!) Since

$$\|e^{(0)} - e^{(1)}\|^2 = \mathbf{Y}^T \hat{P}_{V \cap V_0^{\perp}} \mathbf{Y},$$

we need only show that $\mathcal{C}(U) = V \cap V_0^{\perp}$.

By the form of U we must have $\mathcal{C}(U) \subseteq \mathcal{C}(\mathbb{X}) = V$, so by Exercise 1,

$$C(U) \subseteq V \implies V = C(U) \oplus (V \cap C(U)^{\perp}).$$

But by corollary (a), $V = V_0 \oplus (V \cap V_0^{\perp})$. We claim that it is sufficient to show

$$V \cap \mathcal{C}(U)^{\perp} = V_0. \tag{3}$$

To see this, note that this would imply $V_0 \subseteq \mathcal{C}(U)^{\perp} \iff \mathcal{C}(U) \subseteq V_0^{\perp}$, and

$$V = V_0 \oplus (V \cap V_0^{\perp}) = V_0 \oplus \mathcal{C}(U).$$

In turn, this would imply the desired equality $V \cap V_0^{\perp} = \mathcal{C}(U)$: the inclusion $\mathcal{C}(U) \subseteq V \cap V_0^{\perp}$ is already shown, and for any $w \in V \cap V_0^{\perp}$, its unique representation is $w = x + z \in V_0 \oplus \mathcal{C}(U)$ for one direct sum, and $w = 0 + w \in V_0 \oplus (V \cap V_0^{\perp})$ for the other — as $\mathcal{C}(U) \subseteq V \cap V_0^{\perp}$, the two representations are equal and $w = z \in \mathcal{C}(U)$.

We finish by proving (3), which is equivalent to $V \cap \mathcal{N}(U^T) = V_0$. First, for $v \in V_0$, there exists $\beta \in \mathcal{N}(A)$ such that $v = \mathbb{X}\beta$. We must then have $\beta = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^Tv$, so $\mathbf{0}_q = A\beta = U^Tv$, implying $v \in \mathcal{N}(U^T)$. As v belongs to V trivially, $v \in V \cap \mathcal{N}(U^T)$. Conversely, for $v \in V \cap \mathcal{N}(U^T)$, there exists $\beta \in \mathbb{R}^d$ such that $v = \mathbb{X}\beta$ and $\mathbf{0}_q = U^Tv$. Hence $\mathbf{0}_q = A(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{X}\beta = A\beta$, so $v \in V_0$. \square

Exercise 3. Given the facts we showed above, derive the form of the test statistic F_{V,V_0} from (1) in this example. How does this compare to the statistic F derived at the end of Section 1?