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1 Identifiability in statistical models

In statistical inference, the concept of identifiability is fundamental. If we wish to be able to
estimate a parameter from data, it has to be the case that different parameters induce different
observed data distributions.

Consider for instance, the parametric models

(a) Pµ ∈ F = {Pµ |µ ∈ R}, with Pµ = N (µ, 1).

(b) Pθ ∈ F = {Pθ |θ ∈ R2}, with Pθ = N (θ1 + θ2, 1), where θ = [θ1 θ2]
T .

Since Pµ = Pµ′ =⇒ µ = µ′, we would say µ is identifiable. On the other hand, Pθ = Pθ′ , where
θ = (1, 0) and θ′ = (0, 1) — we cannot distinguish between these two parameters, as they induce
the same distribution. In this case, we would say θ is non-identifiable.

In the abstract case, suppose we observe data S = (Z1, . . . ,Zn) ∼ Pθ, with parameter θ ∈ Θ
indexing the statistical model F = {Pθ |θ ∈ Θ}. The model, or equivalently the parameter θ, is
called identifiable if

Pθ = Pθ′ =⇒ θ = θ′.

More generally, a function g with domain Θ is called identifiable if

Pθ = Pθ′ =⇒ g(θ) = g(θ′).

Equivalently, g(θ) 6= g(θ′) =⇒ Pθ 6= Pθ′ . In some cases, the full model is not identifiable, but
the model can be thought of as “partially identifiable” if there are some functions g of θ that are
identifiable, i.e., there are some functions of the parameters which we can hope to estimate.

2 Identifiability in the linear model

The homoscedastic Gaussian linear model (i.e., assumptions (A), (B), (C), (D) from the notes)
posits that

Y |X ∼ Nn(Xβ, σ2In),

for some β ∈ Rd, σ2 ≥ 0. Let θ = [βT σ2]T ∈ Rd × [0,∞) =: Θ denote the full set of parameters.

Then θ ∈ Θ indexes the parametric model F = {P (n)
θ |θ ∈ Θ} for the conditional distribution of Y

given X, where P
(n)
θ = Nn(Xβ, σ2In). The next exercise shows that the function g(θ) = β is not

identifiable when X is not full column rank.



Exercise 1. In the homoscedastic Gaussian linear model, show that β is not identifiable from the
distribution of Y given X when rank(X) < d.

Since rank(X) < d, we know by rank-nullity that dim(N (X)) ≥ 1, so take v 6= 0 such that Xv = 0n.
Then fixing σ2 ∈ [0,∞), let θ1 = [βT σ2]T , θ2 = [(β + v)T σ2]T , and see that

P
(n)
θ1

= Nn(Xβ, σ2In) = Nn(X(β + v), σ2In) = P
(n)
θ2
,

but β 6= β + v. Thus β is not identifiable.

Lemma 1. In the homoscedastic Gaussian linear model, a function h of β (think g(θ) = h(β)) is
identifiable if and only if for some φ with domain C(X), h(β) = φ(Xβ), for all β ∈ Rd.

Proof. We first show that g(θ) = Xβ is identifiable, which will imply h(β) = φ(Xβ) is identifiable,
for any given φ. But the former fact is immediate, since for θ1 = [βT1 σ21]T , θ2 = [βT2 σ22]T ∈ Θ, then

P
(n)
θ1

= P
(n)
θ2

implies that the means of these conditional distributions are equal, i.e., Xβ1 = Xβ2.

Conversely, suppose there does not exist a function φ with domain C(X) satisfying h(β) = φ(Xβ),
for all β ∈ Rd. Then there must exist β1,β2 ∈ Rd with Xβ1 = Xβ2, but h(β1) 6= h(β2). Fixing
σ2 ∈ [0,∞), we can take θ1 = [βT1 σ2]T , θ2 = [βT2 σ2]T , and see that

P
(n)
θ1

= Nn(Xβ1, σ
2In) = Nn(Xβ2, σ

2In) = P
(n)
θ2
,

yet h(β1) 6= h(β2). Therefore, h(β) is not identifiable.

The following result and exercise will help us understand identifiability of linear functions of the
regression parameters.

Lemma 2. Let B ∈ Rk×d and C ∈ R`×d. Then

R(B) ⊆ R(C) ⇐⇒ ∃M ∈ Rk×` such that B = MC.

Proof. If ∃M ∈ Rk×` such that B = MC, then

R(B) = R(MC) = C(CTMT ) ⊆ C(CT ) = R(C),

where the inclusion follows trivially from the definition of the column space. Conversely, suppose
R(B) ⊆ R(C), or equivalently that for all v ∈ Rk, there exists u ∈ R` such that BTv = CTu.

We can find ui ∈ R` such that CTui = BT e
(k)
i = Bi·, where Bi· denotes the i-th row of B, for

i = 1, . . . , k, so let M = [u1 · · · uk]T . Then, observe that

B =

B
T
1·
...
BT
k·

 =

u
T
1 C
...

uTkC

 =

u
T
1
...
uTk

C = MC,

concluding the argument.
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A linear function of the regression parameters, Aβ, is called estimable if g(θ) = Aβ is identifiable.

Exercise 2. Show that Aβ is estimable iff R(A) ⊆ R(X).

Suppose A ∈ Rq×d. The result is obtained from the following sequence of equivalences:

Aβ is estimable ⇐⇒ ∃φ : C(X)→ Rq such that for all β ∈ Rd, Aβ = φ(Xβ), by Lemma 1,

⇐⇒ ∃M ∈ Rq×n such that A =MX, by linearity of matrix multiplication,

⇐⇒ R(A) ⊆ R(X), by Lemma 2.

Although seemingly simple, the equivalence invoking linearity really requires additional care in the
‘only if’ direction. To elaborate, suppose φ : C(X) → Rq satisfies Aβ = φ(Xβ), for all β ∈ Rd, so
that TA = φ ◦ TX, where TB is the linear transformation associated with the matrix B. Since TX is
surjective on its image C(X), Fact 1 below implies that φ ∈ L(C(X),Rq). By Fact 2, we can extend
φ to φ∗ ∈ L(Rn,Rq), satisfying φ∗(w) = φ(w), for all w ∈ C(X). By material from Lab 2, there
must then be a (unique) matrix M ∈ Rq×n such that Mw = φ∗(w), for all w ∈ Rn. Therefore,

MXβ = φ∗(Xβ) = φ(Xβ) = Aβ,

for all β ∈ Rd, so MX = A, as claimed.

Fact 1: Suppose for vector spaces U, V,W , T ∈ L(U,W ) is a linear map, S ∈ L(U, V ) is surjective,
and T = f ◦ S for some f : V →W . Then f ∈ L(V,W ).

Proof. If f is not linear, then ∃α, β ∈ F and v1, v2 ∈ V such that f(αv1 + βv2) 6= αf(v1) + βf(v2).
By surjectivity, ∃u1, u2 ∈ U such that v1 = S(u1), v2 = S(u2). By linearity of S,

T (αu1 + βu2) = f(S(αu1 + βu2)) = f(αv1 + βv2) 6= αf(v1) + βf(v2) = αT (u1) + βT (u2),

contradicting linearity of T . Hence f is linear.

Fact 2: Suppose V is a finite-dimensional vector space, and U ⊆ V is a linear subspace. If W is
another vector space and T ∈ L(U,W ), then there exists T ∗ ∈ L(V,W ) satisfying T ∗(v) = T (v),
for all v ∈ U , i.e., T ∗ extends T from U to all of V .

Proof. See here for a discussion when W = R — the same ideas apply here. Extend a basis of U
to a basis for V , and define T ∗ on the basis to equal T for any basis vector for U , and 0W for any
basis vector for V \U . With this, define T ∗ to be the linear combination of T ∗ applied to the basis
representation of its input.

We conclude this section with a statement of results, analogous to what we have seen in the full
rank setting, that apply even when X is not full rank. The proofs involve working with the SVD
of X, the pseudoinverse (XTX)−, and some of this may be left for the next homework.

Lemma 3. Suppose that r = rank(X) ≤ d, and let β̂ = (XTX)−XTY, the least squares estimator.

(i) Assume the homoscedastic linear model (i.e., assumptions (A) - (C)), and suppose c ∈ R(X).
Then cT β̂ is the BLUE of cTβ. Under normality (i.e., if additionally (D) holds), we also have
cT β̂ ∼ N (cTβ, σ2cT (XTX)−c).

(ii) Let σ̂2 = 1
n‖(In − P̂X)Y‖2. Under assumptions (A), (B), (C), (D), nσ̂2

n−r |X ∼ χ
2
n−r(0).

(iii) Assuming (A), (B), (C), (D), cT β̂ ⊥⊥ σ̂2 |X, and cT β̂−cTβ√
nσ̂2

n−r c
T (XTX)−c

|X ∼ tn−r(0).
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3 Review of asymptotics in probability theory

We review here some definitions and major results in large sample theory, that will be helpful in
studying the random design setting, among other areas.

Suppose (Xn)∞n=1, with Xn = [Xn1 · · · Xnm]T , is a sequence of random vectors, on the proba-
bility space (Ω,A, P ), and let X = [X1 · · · Xm]T be another random m-vector on this space.

(1) If Xn converges pointwise to X, in the sense that Xn(ω) → X(ω) as n → ∞, for all ω ∈ Ω,
then we say Xn converges surely to X.

(2) If ∃N ∈ A with P (N) = 0, such that Xn(ω)→ X(ω) as n→∞, for all ω ∈ Ω \N , meaning

P
[

lim
n→∞

Xn = X
]

= 1,

then we say Xn converges almost surely to X — we write Xn
a.s.→ X.

(3) If ∀ε, δ > 0, ∃nε,δ ∈ N such that

P [‖Xn −X‖ > ε] ≤ δ, for all n ≥ nε,δ,

then we say Xn converges in probability to X. Equivalently, for all ε > 0,

lim
n→∞

P [‖Xn −X‖ > ε] = 0 ⇐⇒ lim
n→∞

P [‖Xn −X‖ ≤ ε] = 1.

In this case, we write Xn
P→ X.

(4) Let Fn(x) = P [Xn1 ≤ x1, . . . , Xnm ≤ xm] and F (x) = P [X1 ≤ x1, . . . , Xm ≤ xm]. If

Fn(x)→ F (x), as n→∞,

for all x ∈ Rm where F is continuous, then we say Xn converges in distribution to X — we

write Xn
D→ X.

Convergence of types (1) or (2) is often far stronger than will be possible in practice, so we typically
work with the weaker types of convergence, (3) and (4). Recall the hierarchy

(1) =⇒ (2) =⇒ (3) =⇒ (4),

and (3) ⇐⇒ (4) when X is constant. Note also that for convergence almost surely and in
probability, Xn converges to X if and only if Xnj converges to Xj for j = 1, . . . ,m. The same
does not hold for convergence in distribution (cf. Cramer-Wold device). In addition to the famous
results below, recall the continuous mapping theorems, Slutsky’s theorem, and the many uses of
characteristic functions.

Weak law of large numbers: Suppose (Xn)∞n=1 is an iid sequence of random vectors, with
E(X1) = µ. Letting Xn = 1

n

∑n
i=1Xi,

Xn
P→ µ.

Central limit theorem: Suppose (Xn)∞n=1 is an iid sequence of random vectors, with E(X1) = µ
and Var(X1) = Σ. Then

√
n(Xn − µ)

D→ Nm(0m,Σ).
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4 Order in probability notation (if we have time)

Succinct notation can often help simplify derivations and clarify complex ideas. Stochastic order
notation, in particular the use of op( · ) and Op( · ) is one useful shorthand in many calculations.
We briefly review definitions and basic properties here.

• Convergence in probability: if Xn
P→ 0m, then we write

Xn = op(1).

In greater generality, for a given sequence of random variables Un 6= 0, we write

Xn = op(Un) ⇐⇒ Xn

Un
= op(1).

• Stochastic boundedness: we say the sequence Xn is stochastically bounded if for any ε > 0,
there exists M > 0 and N ∈ N such that

P [‖Xn‖ > M ] < ε,∀n ≥ N.

In this case, we write Xn = Op(1), and for a sequence Un 6= 0,

Xn = Op(Un) ⇐⇒ Xn

Un
= Op(1).

As with usual o( · ) and O( · ) notation, the equality should be understood as the function on the
left belonging to the class op(an) or Op(an) — these can be seen as the set of all random sequences
on this probability space that satisfy the definition. Note the following basic properties:

• op(1) + op(1) = op(1)

• op(1) +Op(1) = Op(1)

• op(1)Op(1) = op(1)

• Unop(1) = op(Un)

• UnOp(1) = Op(Un)

• op(Op(1)) = op(1)

• If Xn
D→ X, then Xn = Op(1).

If you are interested, see Chapter 2.2 of Asymptotic Statistics (van der Vaart, 1998) for more.

5


	Identifiability in statistical models
	Identifiability in the linear model
	Review of asymptotics in probability theory
	Order in probability notation (if we have time)

