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In this note, we expand some arguments in this post to prove Weyl’s inequality, a result bounding the distance
between singular values of two matrices (or alternatively bounding the distance between eigenvalues of two
symmetric matrices).

Review of singular value decomposition

Let A ∈ Rm×n be an arbitrary m × n real matrix. Let r = rank(A), and the singular value decomposition
of A be given by A = UΣV T =

∑r
i=1 σiuiv

T
i , where U = [u1 · · ·um] ∈ Rm×m, V = [v1 · · · vn] ∈ Rn×n are

orthogonal, and Σ ∈ Rm×n a rectangular diagonal matrix, i.e., the (i, j)-th entry of Σ is 0, for i 6= j, and
the (i, i)-th entry of Σ is σi ≥ 0, for i = 1, . . . ,min(m,n) — we can arrange the singular values of A such
that σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin(m,n). Recall that v1, . . . , vn are eigenvectors of symmetric
matrix ATA with corresponding eigenvalues σ2

1 , . . . , σ
2
r , 0, . . . , 0, and v1, . . . , vr form an orthonormal basis for

C(ATA) = R(A) ⊆ Rn. Similarly, u1, . . . , um are eigenvectors of symmetric matrix AAT with corresponding
eigenvalues σ2

1 , . . . , σ
2
r , 0, . . . , 0, and u1, . . . , ur form an orthonormal basis for C(AAT ) = C(A) ⊆ Rm.

For matrix A, we defined the operator norm as

‖A‖op = sup
x∈Rn\{0}

‖Ax‖
‖x‖

= sup
x∈Sn−1

‖Ax‖,

where Sn−1 = {x ∈ Rn : ‖x‖ = 1} is the unit sphere in Rn. We showed that ‖A‖op = σ1, using a result from
homework:

‖A‖2op = sup
x∈Sn−1

xT (ATA)x = σ2
1 ,

since σ2
1 is the maximum eigenvalue of symmetric matrix ATA.

Variational characterizations of singular values

Let V(p)
k = {V ⊆ Rp |V a subspace,dim(V ) = k} be the class of all k-dimensional subspaces of Rp, for any

p, k ∈ N with k ≤ p.
Theorem (Fischer-Courant). With A ∈ Rm×n given as above, and k ∈ {1, . . . ,min (m,n)},

σk = sup

{
inf

x∈V ∩Sn−1
‖Ax‖ : V ∈ V(n)

k

}
= inf

{
sup

x∈V ∩Sn−1

‖Ax‖ : V ∈ V(n)
n−k+1

}
.

Proof. For the first equality, let V ∈ V(n)
k be arbitrary, and note that V ∩L (vk, . . . , vn) 6= {0}, since otherwise

we could form a set of k+(n−k+1) = n+1 linearly independent vectors in Rn (recall result from first homework).
Thus, we can take z ∈ V ∩ L (vk, . . . , vn) such that ‖z‖ = 1 (take any non-zero vector and normalize it), so
there are constants ak, . . . , an ∈ R such that

z =

n∑
i=k

aivi,

and 1 = ‖z‖2 =
∑n

i=k a
2
i ‖vi‖2 =

∑n
i=k a

2
i . Observe that

Az =

min (m,n)∑
i=1

n∑
j=k

ajσiuiv
T
i vj =

min (m,n)∑
i=k

aiσiui.

Hence, as σk is greater than all subsequent singular values,

inf
x∈V ∩Sn−1

‖Ax‖ ≤
√
‖Az‖2 =

√√√√min (m,n)∑
i=k

a2iσ
2
i ≤

√√√√σ2
k

n∑
i=k

a2i =
√
σ2
k = σk,

showing that σk ≥ sup
{

infx∈V ∩Sn−1‖Ax‖ : V ∈ V(n)
k

}
.
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Conversely, set V = L (v1, . . . , vk) ∈ V(n)
k , and let x ∈ V ∩ Sn−1 be an arbitrary unit vector in this subspace.

Then there are constants b1, . . . , bk ∈ R such that

x =

k∑
i=1

bivi, =⇒ Ax =

min (m,n)∑
i=1

k∑
j=1

bjσiuiv
T
i vj =

k∑
i=1

biσiui,

and 1 = ‖x‖2 =
∑k

i=1 b
2
i ‖vi‖2 =

∑k
i=1 b

2
i . Thus,

‖Ax‖ =

√√√√ k∑
i=1

b2iσ
2
i ≥ σk

√√√√ k∑
i=1

b2i = σk,

so infx∈V ∩Sn−1‖Ax‖ ≥ σk. But this infimum is attained at x = vk, as Avk = σkuk has norm σk. This shows

that σk = infx∈V ∩Sn−1‖Ax‖, so σk ≤ sup
{

infx∈V ∩Sn−1‖Ax‖ : V ∈ V(n)
k

}
, establishing the first equality.

The second equality is shown in an analogous fashion, but we will elaborate for completeness. Let V ∈ V(n)
n−k+1

be arbitrary, and note that V ∩L (v1, . . . , vk) 6= {0}, since otherwise we could form a set of k+(n−k+1) = n+1
linearly independent vectors in Rn. Thus, we can take z ∈ V ∩L (v1, . . . , vk) such that ‖z‖ = 1, so there are
constants a1, . . . , ak ∈ R such that

z =

k∑
i=1

aivi,

and 1 = ‖z‖2 =
∑k

i=1 a
2
i ‖vi‖2 =

∑k
i=1 a

2
i . Observe that

Az =

min (m,n)∑
i=1

k∑
j=1

ajσiuiv
T
i vj =

k∑
i=1

aiσiui.

Hence, as σk is less than all previous singular values,

sup
x∈V ∩Sn−1

‖Ax‖ ≥
√
‖Az‖2 =

√√√√ k∑
i=1

a2iσ
2
i ≥

√√√√σ2
k

k∑
i=1

a2i =
√
σ2
k = σk,

showing that σk ≤ inf
{

supx∈V ∩Sn−1‖Ax‖ : V ∈ V(n)
n−k+1

}
.

Conversely, set V = L (vk, . . . , vn) ∈ V(n)
n−k+1, and let x ∈ V ∩ Sn−1 be an arbitrary unit vector in this

subspace. Then there are constants bk, . . . , bn ∈ R such that

x =

n∑
i=k

bivi, =⇒ Ax =

min (m,n)∑
i=1

n∑
j=k

bjσiuiv
T
i vj =

min (m,n)∑
i=k

biσiui,

and 1 = ‖x‖2 =
∑n

i=k b
2
i ‖vi‖2 =

∑n
i=k b

2
i . Thus,

‖Ax‖ =

√√√√min (m,n)∑
i=k

b2iσ
2
i ≤ σk

√√√√ n∑
i=k

b2i = σk,

so supx∈V ∩Sn−1‖Ax‖ ≤ σk. But this supremum is attained at x = vk, as Avk = σkuk has norm σk. This shows

that σk = supx∈V ∩Sn−1‖Ax‖, so σk ≥ inf
{

supx∈V ∩Sn−1‖Ax‖ : V ∈ V(n)
n−k+1

}
, as desired.
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Singular values of sums of matrices

We will now apply the Fischer-Courant characterization of singular values to relate the singular values of a
matrix sum to those of its summands. For arbitrary matrix A ∈ Rm×n, we know that singular values are
uniquely defined as the square root of the eigenvalues of the symmetric positive semi-definite matrix ATA
(or equivalently AAT ), so we can define the function σk : Rm×n → [0,∞), for k = 1, . . . ,min (m,n), such
that σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin (m,n)(A) are the ordered singular values of A for any A ∈ Rm×n. Note that
σ1(A) = ‖A‖op, and for k = 1, . . . ,min (m,n), σk(A) = σk(−A), since the identical matrices ATA = (−A)T (−A)
share the same eigenvalues.

Theorem. Let A, B ∈ Rm×n be any two real matrices of the same dimension, then

σk+`−1(A+B) ≤ σk(A) + σ`(B),

for any k, ` ∈ {1, . . . ,min (m,n)} such that k + `− 1 ≤ min (m,n).

Proof. By Fischer-Courant,

σk+`−1(A+B) = inf

{
sup

x∈V ∩Sn−1

‖Ax+Bx‖ : V ∈ V(n)
n−k−`+2

}
, (1)

and we can write similar formulae for σk(A) and σ`(B). In the proof of Fischer-Courant, we showed that

the infimum over subspaces is exactly attained, so we can take VA ∈ V(n)
n−k+1 and VB ∈ V(n)

n−`+1 such that
σk(A) = supx∈VA∩Sn−1‖Ax‖ and σ`(B) = supx∈VB∩Sn−1‖Bx‖. Let W = VA ∩ VB , and note that

dim(W ) = dim(VA) + dim(VB)− dim(VA + VB) ≥ (n− k + 1) + (n− `+ 1)− n = n− k − `+ 2.

Moreover, by the choice of VA and VB ,

sup
x∈W∩Sn−1

‖Ax+Bx‖ ≤ sup
x∈W∩Sn−1

(‖Ax‖+ ‖Bx‖) ≤ sup
x∈VA∩Sn−1

‖Ax‖+ sup
x∈VB∩Sn−1

‖Bx‖ = σk(A) + σ`(B).

We could achieve the same bound by replacing W with any V ∈ V(n)
n−k−`+2 such that V ⊆ W , as then

supx∈V ∩Sn−1‖Ax+Bx‖ ≤ supx∈W∩Sn−1‖Ax+Bx‖. Hence,

σk(A) + σ`(B) ≥ σk+`−1(A+B),

by formula (1).

Corollary. The functions σk : Rm×n → [0,∞) are Lipschitz continuous with respect to the operator norm, with
Lipschitz constant 1. In other words, for any A,B ∈ Rm×n and k ∈ {1, . . . ,min (m,n)},

|σk(A)− σk(B)| ≤ ‖A−B‖op.

Proof. Applying the above theorem with ` = 1, we find

σk(A) = σk(B + (A−B)) ≤ σk(B) + σ1(A−B),

and similarly
σk(B) = σk(A+ (B −A)) ≤ σk(A) + σ1(B −A).

Noting that σ1(A−B) = σ1(B −A) = ‖A−B‖op, we obtain

|σk(A)− σk(B)| ≤ ‖A−B‖op.
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Analogous results for symmetric matrices

We have seen that any real symmetric matrix A ∈ Rn×n has spectral decomposition V ΛV T =
∑n

i=1 λiviv
T
i ,

where V = [v1 · · · vn] ∈ Rn×n is orthogonal, Λ = diag(λ1, . . . , λn), and the columns v1, . . . , vn are eigenvectors
of A with corresponding eigenvalues λ1, . . . , λn ∈ R. Since for A symmetric, ATA = AAT = A2, which has
eigenvalues λ21, . . . , λ

2
n, it is clear that the eigenvalues and singular values of a symmetric matrix are related: if

λ is an eigenvalue of A, then |λ|= σj(A) for some j ∈ {1, . . . , n}. Given this close relationship between spectral
and singular value decompositions, we might expect all of the above results for singular values of matrices to
have analogs concerning the eigenvalues of symmetric matrices. This is indeed the case, and we give the details
of this below.

In general, let Symn ⊆ Rn×n denote the space of n × n real symmetric matrices (remember this is a vec-
tor space, i.e., linear combinations of symmetric matrices are symmetric), and let λk : Symn → R, k = 1, . . . , n
be such that λ1(A) ≥ · · · ≥ λn(A) are the ordered eigenvalues of any symmetric matrix A. Recall from home-
work that λ1(A) = supx∈Sn−1 xTAx and λn(A) = infx∈Sn−1 xTAx. This motivates that we can replace the role
of σk with λk, orthogonal matrix U with V , and ‖Ax‖ with xTAx in all the above arguments, to get analogous
results — for the two theorems below, check that the logic flows through seamlessly!

Theorem (Fischer-Courant). For any A ∈ Symn, and k ∈ {1, . . . , n},

λk(A) = sup

{
inf

x∈V ∩Sn−1
xTAx : V ∈ V(n)

k

}
= inf

{
sup

x∈V ∩Sn−1

xTAx : V ∈ V(n)
n−k+1

}
.

Theorem. Let A, B ∈ Symn be any two real symmetric matrices of the same dimension, then

λk+`−1(A+B) ≤ λk(A) + λ`(B),

for any k, ` ∈ {1, . . . , n} such that k + `− 1 ≤ n.

Corollary (Weyl’s Inequality). For any A,B ∈ Symn,

|λk(A)− λk(B)| ≤ ‖A−B‖op,

for all k ∈ {1, . . . , n}.

Proof. As before, applying the above theorem with ` = 1, we find

λk(A) = λk(B + (A−B)) ≤ λk(B) + λ1(A−B),

and similarly
λk(B) = λk(A+ (B −A)) ≤ λk(A) + λ1(B −A).

Next, note that for any C ∈ Symn, σ1(C) = max (|λ1(C)|, |λn(C)|), by the correspondence between eigenvalues
and singular values of symmetric matrices. Therefore,

λ1(A−B) ≤ σ1(A−B) = ‖A−B‖op,

and
λ1(B −A) ≤ σ1(B −A) = σ1(A−B) = ‖A−B‖op.

Hence,
|λk(A)− λk(B)| ≤ ‖A−B‖op.
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