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Motivating example

Consider the IV functional problem we have been studying in lab: O = (X, Z,A, Y ) ∼ P , and we
assume that the conditional IV functional is constant,

β(P ) =
CovP (Y, Z | X)

CovP (A,Z | X)
≡ EP [CovP (Y,Z | X)]

EP [CovP (A,Z | X)]
.

Let ν(P ) = EP [(Y − γTYX)Z] and δ(P ) = EP [(A− γTAX)Z] for any P , where

γW = EP [XXT ]−1EP [XW ]

are the population least squares coefficients, for W = A and W = Y . If we assume linear models
for EP (Y |X) and EP (A |X), then we have β(P ) = ν(P )

δ(P ) .

In the problem, we took the outcome regression estimator

β̂ =
Pn[(Y − γ̂TYX)Z]

Pn[(A− γ̂TAX)Z]
=
ν̂

δ̂
,

where
γ̂W = Pn[XXT ]−1Pn[XW ]

are the sample least squares estimators, for W = A and W = Y . We began by analyzing the
numerator and denominator separately. Consider for concreteness the numerator functional ν(P )
and its estimator ν̂. In order to characterize the asymptotic behavior of

√
n(ν̂ − ν(P )), we tried

to write this as a sample average of iid mean zero terms — as we will soon see, such terms are
called the influence function of the estimator ν̂ — plus some asymptotically negligible quantity.
This is useful because the central limit theorem and Slutsky’s theorem can then be combined to
easily obtain the asymptotic distribution.

With some ingenuity, we were able to show that

√
n(ν̂ − ν(P )) =

√
nPn[(Y − γTYX)(Z − γTZX)− ν(P )] + oP (1).

But it was mysterious, at least to me, why the projection γTZX = Π[Z | X] suddenly appeared in
the influence function, despite ν̂ not containing either γZ or γ̂Z . We simply had to include it for
the remainder term to be oP (1).

We will now discuss a general strategy — outlined to me by none other than Andrea — that is
useful in many problems similar to this, where an estimator is a sample average of the observed
data O but with an estimator of an unknown parameter plugged in for the truth. We will see that
the appearance of Π[Z | X] can be thought of as the “price to pay” for plugging in γ̂Y instead of
γY in ν̂. I hope you will find this approach as useful as I do!



General strategy

For any vector γ, let
Uγ(O) = (Y − γTX)Z.

Note that ν̂ = Pn[Uγ̂Y ] and ν(P ) = EP [UγY ]. In general, we have the following expansion
√
n(ν̂ − ν(P )) =

√
n
{(

Pn[Uγ̂Y ]− EP [Uγ̂Y ]
)
− (Pn[UγY ]− EP [UγY ])

}
(1)

+
√
n {Pn[UγY ]− EP [UγY ]} (2)

+
√
n
{
EP [Uγ̂Y ]− EP [UγY ]

}
, (3)

where

EP [Uγ ] =

∫
O
Uγ(o) dP (o),

i.e., γ is treated as a constant in the integral, even if it itself is random like γ̂Y . Terms (1), (2), and
(3) are typically handled separately, and have the following names/interpretations:

(1) The centered empirical process term Gn(Uγ̂Y − UγY ), where for any function measurable real-
valued function f of observed data O,

Gn(f) =
√
n(Pn[f ]− EP [f ]).

The goal in most problems is to show that this is oP (1). In fact, this is complicated in many
problems, and requires ideas from empirical process theory, such as Donsker conditions, or may
be dealt with via sample splitting.

(2) A well-behaved linear term
√
nPn[UγY −EP (UγY )] = Gn(UγY ). As a scaled sample mean of mean

zero quantities, it converges in distribution by the central limit theorem to N (0,VarP (UγY )).

(3) An asymptotic bias/drift term
√
nEP [Uγ̂Y − UγY ]. This can be interpreted as the average cost

of using γ̂Y to estimate γY . At times, such as in our motivating example, the contribution is
non-negligible, and we will need to add this to the term in (2) to get the full story. We will see
in the course that for some semiparametric theory-based estimators, this term can be oP (1),
and in fact this can be seen as the motivation for such estimators!

More generally, a Taylor expansion of the following form is often helpful for handling this term:

EP [Uγ̂Y ]− EP [UγY ]

=

(
d

dγ
EP [Uγ ]

∣∣∣∣
γ=γ∗

)T
(γ̂Y − γY ), for some γ∗ “between” γ̂Y and γY ,

=

(
d

dγ
EP [Uγ ]

∣∣∣∣
γ=γY

)T
(γ̂Y − γY ) + oP (n−1/2), since γ̂Y − γY = OP (n−1/2),

by the continuous mapping theorem when EP [Uγ ] is continuously differentiable in γ.

In addition to providing some intuition for the breakdown of the estimation error, this paradigm
is helpful from a calculation perspective; it takes the guesswork out of finding a nice asymptotic
representation. We will see that we will obtain the same answer as we did by proceeding directly,
but no ingenuity will be required.
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https://en.wikipedia.org/wiki/Empirical_process#Definition
http://www.stat.columbia.edu/~bodhi/Talks/Emp-Proc-Lecture-Notes.pdf


Calculations in motivating example

We deal with the three terms individually. First, for (1):

√
n
{(

Pn[Uγ̂Y ]− EP [Uγ̂Y ]
)
− (Pn[UγY ]− EP [UγY ])

}
=
√
n
{
Pn
[
(γY − γ̂Y )TXZ

]
− EP

[
(γY − γ̂Y )TXZ

]}
= −(Pn[ZXT ]− EP [ZXT ]) ·

√
n(γ̂Y − γY )

= oP (1)OP (1)

= oP (1).

Term (2) is straightforward:

√
n {Pn[UγY ]− EP [UγY ]} =

√
nPn

{
(Y − γTYX)Z − ν(P )

}
.

Finally, for (3),

√
nEP [Uγ̂Y − UγY ]

= −
√
n(γ̂Y − γY )TEP [XZ].

But recall that the sample least squares coefficient for projecting Y on X is asymptotically linear:

√
n(γ̂Y − γY ) =

√
nEP [XXT ]−1Pn[X(Y − γTYX)] + oP (1).

Thus,

√
nEP [Uγ̂Y − UγY ]

= −
√
nPn[(Y − γTYX)XT ]EP [XXT ]−1EP [XZ] + oP (1).

= −
√
nPn[(Y − γTYX)XTγZ ] + oP (1)

Adding (1), (2), and (3) together, we obtain

√
n(ν̂ − ν(P )) =

√
nPn[(Y − γTYX)(Z − γTZX)− ν(P )] + oP (1),

exactly the same as before!
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