
Projections in Finite Dimensions & Least Squares
BST 257: Theory and Methods for Causality II

Alex Levis, Fall 2021

1 Projections in Hilbert spaces

A (real) Hilbert space is a vector space H equipped with an inner product 〈 · , · 〉 : H × H → R,
such that H is complete with respect to the norm induced by its inner product. Two examples we
saw were the finite-dimesional Euclidian space Rk, for any k ∈ N, with the inner product being the
standard dot product, and the space of finite variance real-valued functions of X ∼ P , denoted
L2(P ), with inner product 〈g, h〉 = EP (g(X)h(X)).

A fundamental fact about Hilbert spaces is that for any closed linear subspace U ⊆ H, projections
onto U exist and are unique. This concept can be defined in two equivalent ways: let v ∈ H, then
the projection of v onto U , denoted ΠU (v) for now, is the unique vector satisfying:

(1) ΠU (v) ∈ U , and

(2) v −ΠU (v) ⊥ U .

Equivalently, (1) and (2) hold if and only if

ΠU (v) = arg min
m∈U

‖v −m‖,

which is to say ΠU (v) is the closest vector in U to v. Essential properties of the projection operator
ΠU : H → U , that follow from the definition, are that it is

(a) Linear: ΠU (av1 + bv2) = aΠU (v1) + bΠU (v2), for all a, b ∈ R, v1, v2 ∈ H.

(b) Self-adjoint: 〈ΠU (v1), v2〉 = 〈v1,ΠU (v2)〉, for all v1, v2 ∈ H.

(c) Idempotent: ΠU (ΠU (v)) = ΠU (v), for all v1, v2 ∈ H.

A convenient fact about finite-dimensional linear subspaces of a Hilbert space is that they are
always closed. The theory of least squares and linear models can then flow nicely by thinking
about projections in certain vector spaces. Let’s explore this next.

2 Population least squares

Consider the finite-dimensional subspace of H spanned by v1, . . . , vk ∈ H:

V0 = L (v1, . . . , vk) :=


k∑

j=1

αjvj

∣∣∣∣α1, . . . , αk ∈ R

 .



For any v ∈ H, there exists α = [α1 · · · αk]T ∈ Rk such that ΠV0(v) =
∑k

j=1 αjvj , by definition of
projection. It can be shown that α is a solution to the so-called normal equations,

Mα = ν, (1)

where the Gram matrix M ∈ Rk×k is given by [M ]i,j = 〈vi, vj〉, and ν = [〈v, v1〉 · · · 〈v, vk〉]T ∈ Rk.
Moreover,

• There always exists a solution to (1).

• There is a unique solution if and only if rank(M) = k.

• There is a unique solution if and only if {v1, . . . , vk} are linearly independent.

In the case where the solution is unique, the matrix M has an inverse, and we have a formula for
the solution to (1), given by

α = M−1ν.

Consider the typical regression setting, in which observe a sample (Xi, Yi)
n
i=1 of iid copies of

(X, Y ) ∼ P , where X = (X1, . . . , Xk)T ∈ Rk. Assuming the k components of X have finite
variance, we can consider projection of Y ∈ L2(P ) onto X = L (X1, . . . , Xk) ⊆ L2(P ). Since this
is a k-dimensional subspace, we know by (1) that there exists β† ∈ Rk such that

EP [XXT ]β† = EP [XY ] ⇐⇒ XTβ† = ΠX (Y ).

If the Gram matrix EP [XXT ] has full rank, which we shall assume, then there is only one solution
to the normal equations:

β(P ) := EP [XXT ]−1EP [XY ], so that ΠX (Y ) = XTβ(P ) = EP [YXT ]EP [XXT ]−1X.

Meanwhile, by the equivalent characterization of projections,

β(P ) = arg min
β∈Rk

‖Y − βTX‖L2(P ).

Thus, β(P ) can be interpreted as the population least squares parameter, as

‖Y − βTX‖2L2(P ) = EP [(Y − βTX)2].

Everything we have done thus far is completely agnostic to a statistical model for P (other than
second moment restrictions). So how does this relate to linear models? Suppose we assert the
linear model

EP (Y |X) = XTβ0.

A classic result is that the conditional expectation of Y givenX also has a projection interpretation:

EP (Y |X) = arg min
g
‖Y − g(X)‖2L2(P ).

This implies that β0 = β(P ) — can you see this? But interestingly, the parameter β(P ) is well-
defined regardless.
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In class, we use the notation Π[Y | X] in lieu of ΠX (Y ). Although slightly more ambiguous, this
notation is convenient, and we overload it to also mean the stacked projections when the input is
a vector: if W = (W1, . . . ,Wp)

T ∈ L2(P )p, then

Π[W |X] :=

ΠX (W1)
...

ΠX (Wp)

 = EP [WXT ]EP [XXT ]−1X.

By extension of univariate projection properties, Π[ · | X] is a linear function of its input, has
components belonging to X , and satisfies the residual orthogonality requirement

W` −Π[W` |X] ⊥ X , for ` = 1, . . . , p,

⇐⇒ 0 = EP

(
{W` −Π[W` |X]}XTα

)
, for any α ∈ Rk, for ` = 1, . . . , p

⇐⇒ 0p = EP

(
{W −Π[W |X]}XTα

)
, for any α ∈ Rk,

⇐⇒ 0p×k = EP

(
{W −Π[W |X]}XT

)
.

Inspecting this requirement, we can prove property 1 of Π from page 49 of the notes: if X includes
a non-zero constant, say X1 ≡ 1, then EP (W − Π[W | X]) = 0p — just look at the first column
of the equation on the last line.

3 Sample least squares

Everything stated in the last section can be said for any probability distribution P such that
X1, . . . , Xp, Y ∈ L2(P ). Consider the empirical law, Pn let Pn ≡ EPn denote expectation under Pn,

and let Π
(n)
X denote projection onto X = L (X1, . . . , Xk) ⊆ L2(Pn). Assuming the Gram matrix

Pn[XXT ] = 1
n

∑n
i=1XiX

T
i has (full) rank k,

β(Pn) = Pn[XXT ]−1Pn[XY ], so that Π
(n)
X (Y ) = XTβ(Pn) = Pn[YXT ]Pn[XXT ]−1X.

It turns out that β(Pn) is exactly the same as the sample least squares estimate β̂. This can be
seen readily from

β(Pn) = arg min
β∈Rk

‖Y − βTX‖L2(Pn),

since

‖Y − βTX‖2L2(Pn)
= Pn[(Y − βTX)2] =

1

n

n∑
i=1

(
Yi − βTXi

)2
is the least squares criterion, minimized by β̂.

Finally, note that in class, we used the notation Πn[Y | X] instead of Π
(n)
X (Y ), and we can also

extend to arbitrary W = (W1, . . . ,Wp)
T ∈ L2(Pn)p:

Πn[W |X] :=

Π
(n)
X (W1)

...

Π
(n)
X (Wp)

 = Pn[WXT ]Pn[XXT ]−1X.

As before, if X includes a non-zero constant under Pn, say Xi,1 = 1 for i = 1, . . . , n, then

Pn(W −Πn[W |X]) = 0p.
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3.1 Properties of β̂

It is not too hard to see that β̂ is consistent for β(P ): by the weak law of large numbers

Pn[XXT ]
P→ EP (XXT ) and Pn[XY ]

P→ EP [XY ].

Thus, by the continuous mapping theorem — in reality, this requires some care, as there may be
some probability that rank(Pn[XXT ]) < k — and limit laws for convergence in probability,

β̂ = Pn[XXT ]−1Pn[XY ]
P→ EP [XXT ]−1EP [XY ] = β(P ).

With some more work, we can establish asymptotic normality of β̂:

√
n
(
β̂ − β(P )

)
=
√
n
(
Pn[XXT ]−1Pn[XY ]− β(P )

)
=
√
nPn[XXT ]−1

(
Pn[XY ]− Pn[XXT ]β(P )

)
=
√
nPn[XXT ]−1Pn

[
X
(
Y −XTβ(P )

)]
Note that EP [X(Y −XTβ(P ))] = EP [(Y −Π[Y |X])XT ]T = 0k, by orthogonality, so we may use
the central limit theorem to deduce that

√
nPn

[
X
(
Y −XTβ(P )

)] D→ N (0k,A),

where A = VarP (X
(
Y −XTβ(P )

)
∈ Rk×k. Letting B = EP (XXT ) ∈ Rk×k and applying a

multivariate version of Slutsky’s theorem,

√
n
(
β̂ − β(P )

)
D→ N (0k,V (P )),

where V (P ) = B−1AB−1.

One last reminder: all of this does not rely on an underlying linear model for EP (Y |X).
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