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1 Recap of projection lemma

Let (H, 〈 · , · 〉) be any inner product space. Let v ∈ H, then a projection of v onto for now an
arbitrary set U , when it exists, is a vector u0 ∈ U satisfying:

(a) u0 ∈ U , and

(b) v − u0 ⊥ U .

Note that this implies uniqueness as if u0, u
′
0 ∈ U satisify (b), then

u0 − u′0 = (v − u′0)− (v − u0) ⊥ U,

so u0 − u′0 ∈ U ∩ U⊥ ⊆ {0H}, meaning u0 = u′0. We now show that when U is a linear subspace
(not necessarily closed), properties (a) and (b) are equivalent to the characterization

u0 = arg min
u∈U

‖v − u‖. (1)

To see this, first assume (a) and (b), then for any u ∈ U

‖v − u‖2 = ‖v − u0‖2 + ‖u0 − u‖2 ≥ ‖v − u0‖2,

by the Pythagorean theorem (i.e., u− u0 ∈ U , v− u0 ∈ U⊥), so (1) is established. Notice also that
equality holds if and only if ‖u0−u‖2 = 0 ⇐⇒ u0 = u, so u0 is the unique minimizer. Conversely,
if (1) holds, then (a) holds by construction, and assume by way of contradiction that (b) is false:
let u1 ∈ U satisfy 〈v − u0, u1〉 = δ 6= 0. Then considering u∗1 = u0 + δ u1

‖u1‖2 ∈ U , observe that

‖v − u∗1‖2 = ‖v − u0‖2 − 2
δ

‖u1‖2
〈v − u0, u1〉+

(
δ

‖u1‖

)2

= ‖v − u0‖2 −
(

δ

‖u1‖

)2

< ‖v − u0‖2,

contradicting (1), thus establishing (b).

Assume the inner product space (or pre-Hilbert space) H is actually a Hilbert space, i.e., it is
complete with respect to the norm induced by its inner product (that being v 7→

√
〈v, v〉), and let

U ⊆ H be a closed linear subspace. The essence of the projection lemma is that it establishes that
projections onto U exist. As a consequence of existence and uniqueness, the operator ΠU : H → U
is well-defined, yielding the projection of elements in H onto U .

Recall also the notation and principal example from the course: the Hilbert space L2(P ), consisting
of all measurable real valued functions g of O ∼ P , such that EP (g(O)2) <∞ (formally, the objects
in L2(P ) are equivalence classes of random functions that are almost surely equal). In this case,
for any g, h ∈ L2(P ), 〈g, h〉 = EP (g(O)h(O)) and ‖g‖2 = 〈g, g〉 = EP (g(O)2). For a random vector
T = (t1, . . . , tp) ∈ L2(P )p, with linear span T =

{
αTT | α ∈ Rp

}
, in the course notes we write

Π[ · |T ] or Π[ · |T ] in place of ΠT . The function Π[ · |M], for an arbitrary closed linear subspace
M⊆ L2(P ) is, also overloaded to stack projections component-wise when the input is a vector.



2 Establishing basic properties of ΠU

We now verify some essential properties of the projection operator that follow from the definition.
In the following exercises, let H be a Hilbert space, and U a closed linear subspace of H. In almost
all cases, it is most convenient to use characterizing properties (a) and (b).

Exercise 1 – Linearity

Show that for any a, b ∈ R, v1, v2 ∈ H,

ΠU (av1 + bv2) = aΠU (v1) + bΠU (v2).

Exercise 2 – Idempotence

Show that ΠU ◦ΠU = ΠU : for any v ∈ H,

ΠU (ΠU (v)) = ΠU (v).

Hint: show that for any u ∈ U , ΠU (u) = u.

Exercise 3 – Self-adjointness

Show that for any v1, v2 ∈ H,
〈v1,ΠU (v2)〉 = 〈ΠU (v1), v2〉.
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Exercise 4 – Projecting in steps

Show that if U1 ⊆ U is a closed linear subspace, ΠU1 ◦ΠU = ΠU ◦ΠU1 = ΠU1 .

Exercise 5 – Projecting onto orthogonal direct sum

Show that if U1, U2 ⊆ H are closed linear subspaces such that U1 ⊥ U2, ΠU1⊕U2 = ΠU1 + ΠU2 .

3 Projections onto more general sums of subspaces

In Exercise 5, we showed how to project onto sums of orthgonal subspaces. More general sums are
harder to deal with. Our strategy will be to orthgonalize one space with respect to the other, such
that the sum remains the same – this will look a lot like a Gram-Schmidt procedure if you have
seen it. Projection will then reduce to Exercise 5. We start with the following fact:

Fact 1 – Projecting onto relative orthgonal complement

Suppose U1 ⊆ U is a closed linear subspace. Then ΠU⊥
1 ∩U

= ΠU−ΠU1 . In particular, when U = H,
ΠU⊥

1
= IH −ΠU1 , where IH ≡ ΠH is the identity map on H.

Proof. It is sufficient to show, for arbitrary v ∈ H,

(i) ΠU (v)−ΠU1(v) ∈ U⊥1 ∩ U , and

(ii) v − (ΠU (v)−ΠU1(v)) ⊥ U⊥1 ∩ U .

For (i), clearly ΠU (v)−ΠU1(v) ∈ U , since U1 ⊆ U and U is a subspace. For arbitrary w ∈ U1,

〈ΠU (v)−ΠU1(v), w〉 = 〈ΠU (v), w〉 − 〈ΠU1(v), w〉 = 〈v,ΠU (w)〉 − 〈v,ΠU1(w)〉 = 〈v, w〉 − 〈v, w〉 = 0,

so ΠU (v)−ΠU1(v) ∈ U⊥1 =⇒ ΠU (v)−ΠU1(v) ∈ U⊥1 ∩ U .
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Next, for (ii) take w ∈ U⊥1 ∩ U arbitrary. Then

〈v − (ΠU (v)−ΠU1(v)), w〉 = 〈v −ΠU (v)︸ ︷︷ ︸
∈U⊥

, w〉+ 〈ΠU1(v)︸ ︷︷ ︸
∈U1

, w〉 = 0,

since w ∈ U and w ∈ U⊥1 . Therefore, v − (ΠU (v)−ΠU1(v)) ⊥ U⊥1 ∩ U .

Fact 2 – Gram-Schmidt orthogonalization

Suppose the closed linear subspace U can be decomposed as U = U1+U2, where U1 ⊆ H is arbitrary
and U2 ⊆ H is a closed linear subspace. Then U = U∗1 ⊕ U2, where

U∗1 = ΠU⊥
2

(U1) = {ΠU⊥
2

(u) : u ∈ U1} = {u−ΠU2(u) : u ∈ U1}.

Proof. Treating U as a Hilbert space in itself (under the inner product of H, restricted to U),

U = (U⊥2 ∩ U)⊕ U2,

since U2 ⊆ U — note that the orthogonal complement of U2 in U is the set of elements of U that
are orthogonal to all of U2, i.e., U⊥2 ∩ U . By Fact 1 we have ΠU⊥

2 ∩U
= ΠU −ΠU2 , so

U = (U⊥2 ∩ U)⊕ U2,

= ΠU⊥
2 ∩U

(U)⊕ U2,

= (ΠU −ΠU2)(U)⊕ U2,

= (IH −ΠU2)(U1 + U2)⊕ U2, as ΠU (u) = u = IH(u) for all u ∈ U,
= ΠU⊥

2
(U1)⊕ U2, as ΠU⊥

2
(u) = (IH −ΠU2)(u) = 0, for all u ∈ U2.

As a corollary, suppose in the setting of the above result, U1 = [{v1, . . . , vk}], where v1, . . . , vk ∈ H
and [B] denotes linear span for any B ⊆ H. Then

ΠU⊥
2

(U1) = [{v1 −ΠU2(v1), . . . , vk −ΠU2(vk)}] = U∗1 .

Specializing to L2(P ), given T =

[
T 1

T 2

]
∈ L2(P )p, and letting Tj be the linear span of the compo-

nents of T j , for j = 1, 2, this says

T = T1 + T2 = R1 ⊕ T2,

where R1 is the linear span of the components of R1 = T 1 − Π[T 1 | T 2] — this is the general
property discussed in section 7.1.1 of the course notes! By Exercise 5, Π[ · |T ] = Π[ · |R1]+Π[ · |T 2],
and from this we can see that the T 1 components of the population least squares parameter for
projecting some vector W ∈ L2(P )k onto T can be obtained by projecting W onto R1.
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